Tetrahedron 66 (2010) 8420-8440

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Chemo- and diastereoselective cyclopropanation of allylic amines and carbamates

Kristína Csatayová, Stephen G. Davies^{*}, James A. Lee, Kenneth B. Ling, Paul M. Roberts, Angela J. Russell, James E. Thomson

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK

ARTICLE INFO

Article history: Received 14 July 2010 Accepted 23 August 2010 Available online 27 August 2010

Keywords: Cyclopropanation Allylic amines Allylic carbamates Simmons–Smith Shi's carbenoid

ABSTRACT

A highly chemo- and diastereoselective protocol for the cyclopropanation of tertiary allylic amines with Shi's carbenoid $[CF_3CO_2ZnCH_2I]$ is described. The high levels of diastereoselectivity observed in these reactions may be attributed to chelation of the nitrogen atom to the zinc reagent, which then transfers a methylene unit to the *syn*-face of the olefin. Furthermore, a stereodivergent protocol for the cyclopropanation of a range of allylic carbamates has been developed, which provides access to both diastereoisomers of the corresponding cyclopropanes with very high levels of diastereoselectivity: cyclopropanation with the Wittig–Furukawa reagent [Zn(CH_2I)_2] proceeds under chelation control to give the corresponding *syn*-product, whilst reaction with Shi's carbenoid proceeds under steric control to give the corresponding *anti*-cyclopropane, in >95:5 dr in both cases.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The cyclopropane motif is found in a wide range of natural products.¹ These range from very simple structures such 1-aminocyclopropanecarboxylic acid **1**, a biosynthetic precursor of the plant hormone ethylene,² to polycyclopropanated structures, such as the cholesteryl ester transfer protein inhibitor U-106305 **2**, isolated from the fermentation broth of *Streptomyces* sp. UC 11136 (Fig. 1).³ In addition to being present in structures of wide-ranging complexity, the cyclopropane motif is also found in secondary metabolites from a variety of biosynthetic pathways. These include polyacetates, fatty acids, amino acids, polyether antibiotics, terpenoids, steroids and alkaloids.⁴

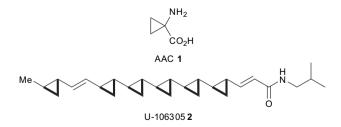
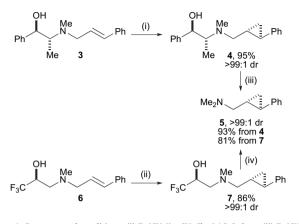


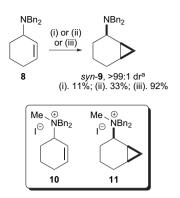
Fig. 1. Natural products containing the cyclopropane motif.


Although a wide range of methods have been developed to facilitate the stereoselective synthesis of cyclopropanes the area has been broadly dominated by three principal methods: (i) transitionmetal catalysed decomposition of diazo compounds followed by addition to an olefin;^{5–7} (ii) Michael-initiated ring closure (MIRC)^{8,9} and (iii) the cyclopropanation of olefins with halomethyl metal reagents.^{10,11} The Simmons–Smith cyclopropanation reaction has been one of the most widely used methods to promote the stereospecific conversion of an olefin into a cyclopropane for over 50 years,¹² and new classes of highly reactive zinc carbenoids have been developed, in particular over the past decade.¹³ As such, the efficient cyclopropanation of isolated and electron poor double bonds is now possible, and the substrate scope of the reaction is therefore immensely broad.^{10b} Diastereoselective cyclopropanation employing a zinc carbenoid, relying upon delivery of the incoming methylene group by the binding of an allylic hydroxyl group to the zinc atom, has long been exploited. Other groups including α , β -unsaturated acetals,¹⁴ amides¹⁵ and boronates¹⁶ have also been shown to enable diastereoselective reaction. Although allylic amines have the same potential for directing cyclopropanation, the competing formation of a zinc-complexed ammonium ylide often thwarts cyclopropanation.¹⁷ The diastereoselective Simmons-Smith cyclopropanation of allylic amines¹⁸ using N-protecting groups bearing free hydroxyl moieties to promote cyclopropanation has recently been reported: Aggarwal et al.¹⁹ demonstrated that treatment of **3** [derived from (1R,2R)-pseudoephredrine] with $Zn(CH_2I)_2$ gave the corresponding cyclopropane 4 in 95% yield and >99:1 dr whilst Katigiri et al.²⁰ reported that cyclopropanation of **6** [derived from (*S*)-1.2-epoxy-3.3.3-trifluoropropane]

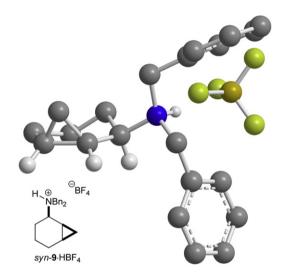
^{*} Corresponding author. E-mail address: steve.davies@chem.ox.ac.uk (S.G. Davies).

can be achieved to give **7** in 86% yield and >99:1 dr. One disadvantage of these approaches, however, is the relatively harsh reaction conditions required for removal of the *N*-substituent (via quarternization with MeI followed by treatment with base), which therefore inherently limits this methodology to the preparation of the corresponding *N*,*N*-dimethyl protected derivatives such as **5** (Scheme 1).

Scheme 1. Reagents and conditions: (i) $Zn(CH_2l)_2$, CH_2Cl_2 , $0 \, ^{\circ}C$, $2 \, days$; (ii) $Zn(CH_2l)_2$, CH_2Cl_2 , $-5 \, ^{\circ}C$, $1 \, h$; (iii) Mel, $6 \, days$ then NaH, THF, reflux, $3.5 \, h$; (iv) Mel, EtOH, reflux, $16 \, h$ then K0⁴Bu, 18-crown-6, THF, rt, $24 \, h$.

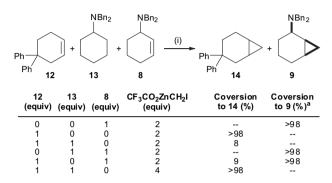

As part of an ongoing research programe directed towards the chemo- and stereoselective functionalisation of allylic amines at the olefin,^{21–23} we became interested in the potential of allylic amines as substrates for the Simmons–Smith reaction. In this manuscript we report our full investigations into the cyclopropanation of allylic amines and their derivatives; part of this work has been communicated previously.²¹

2. Results and discussion


2.1. Cyclopropanation of 3-(*N*,*N*-dibenzylamino)cyclohexene: model studies

Initial studies focussed on cyclopropanation of our model substrate 3-(*N*,*N*-dibenzylamino)cyclohexene **8**.²⁴ Attempted cyclopropanation of **8** with the Wittig–Furukawa reagent $[Zn(CH_2I)_2]^{25}$ or Denmark's reagent [Zn(CH₂Cl)₂]²⁶ proceeded with almost complete consumption of starting material,²⁷ giving a low mass return of cyclopropane syn-9 (>99:1 dr) as the only product in 11 and 33% isolated yield, respectively. Although no other products were isolated from these reactions, comparison of the ¹H NMR spectra of the crude reaction mixtures with those of authentic samples of *N*-methyl ammonium species **10** (prepared in quantitative conversion via treatment of 8 with MeI in MeCN at 40 °C for 2 days) and **11** (prepared via treatment of **9** with $Zn(CH_2I)_2$)²⁸ revealed that N-methylation was the major deleterious sidereaction in this system and accounts for the poor mass return. Cyclopropanation of 8 with the more reactive Shi's carbenoid [CF₃CO₂ZnCH₂I],^{13a} however, proceeded with full conversion to give *syn-***9** in 92% isolated yield and >99:1 dr (Scheme 2).^{29,30} The relative syn-configuration within 9 was proven unambiguously by single crystal X-ray analysis of the corresponding tetrafluoroborate salt 9 · HBF₄ (Fig. 2). This stereochemical outcome is presumably a result of initial binding of the zinc carbenoid by the nitrogen atom, followed by rapid intramolecular cyclopropanation.

A series of competition experiments was designed to probe further the hypothesis that the high syn-diastereoselectivity observed during the cyclopropanation of **8** was a result of a chelation



Scheme 2. Reagents and conditions: (i) Et₂Zn, CH₂I₂, CH₂CI₂, rt, 1 h; (ii) Et₂Zn, ICH₂CI, CH₂CI₂, rt, 1 h; (iii) Et₂Zn, CH₂I₂, TFA, CH₂CI₂, rt, 1 h. [^acrude and purified].

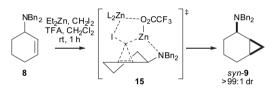
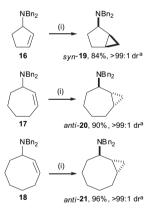
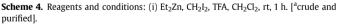


Fig. 2. Chem 3D representation of the single crystal X-ray structure of $9 \cdot \text{HBF}_4$ (some H atoms have been omitted for clarity).

controlled mechanism. 4.4-Diphenvlcvclohex-1-ene 12 and N.Ndibenzylcyclohexylamine 13 were chosen as mimics for the olefin and tertiary amino functionalities within allylic amine 8. respectively;³¹ cyclohexene was deemed to be unsuitable for this purpose as its volatility (bp 83 °C), or indeed the volatility of the corresponding cyclopropane, would mean that accurate determination of the product distributions from any competition experiments would be extremely problematic. It was hoped that the gem-diphenyl group within 12 would significantly reduce this volatility, whilst being remote enough so as to not suppress the cyclopropanation reaction. Reaction of either 8 or 12 with 2.0 equiv of Shi's carbenoid [CF₃CO₂ZnCH₂I] for 30 min resulted in essentially complete conversion (>98%) to give cyclopropanes syn-9 (>99:1 dr) and 14, respectively. The same reactions were then conducted in the presence 1.0 equiv of **13** (as an external tertiary amine) in each case. Reaction of 8 under these conditions resulted in >98% conversion to syn-9 (>99:1 dr), whereas in the case of 12 cyclopropane 14 was produced in only 8% conversion. The observation that the rate of non-directed cyclopropanation of 12 is reduced by the presence of a tertiary amine is consistent with co-ordination of the nitrogen atom to zinc, stabilizing the carbenoid and reducing its reactivity.³² In addition, the observation that the cyclopropanation of allylic amine **8** is not hindered by the presence of a tertiary amine suggests that chelation controlled cyclopropanation is taking place in this case. Furthermore, when an equimolar mixture of allylic amine 8 and olefin 12 was treated with 2.0 equiv of Shi's carbenoid for 30 min syn-9 (>99:1 dr) was produced in >98% conversion, whereas only 9% conversion to **14** was observed. An interesting observation is that in the case of cyclopropanation of **12** in the presence of amine **13**, 1.0 equiv of amine is able to inhibit 2.0 equiv of carbenoid. This suggests that the carbenoid is likely to be present as a dimer. In support of this, the reaction was repeated with 4.0 equiv of carbenoid, which resulted in >98% conversion to **14** after 30 min; this result is consistent with the amine sequestering 2.0 equiv of the carbenoid, leaving the other 2.0 equiv to effect cyclopropanation of **12** (Scheme 3).

Scheme 3. Reagents and conditions: (i) Et_2Zn, CH_2I_2, TFA, CH_2CI_2, 0 $^\circ C$ to rt, 30 min. [^a>99:1 dr].


Fig. 3. Proposed transition state model **15** for the directed cyclopropanation of allylic amine **8** with Shi's carbenoid. [L=ligand].


These data are consistent with the cyclopropanation of allylic amine **8** proceeding via transition state model **15** where a dimeric zinc species derived from Shi's carbenoid $[CF_3CO_2ZnCH_2I]$ is chelated to the nitrogen atom such that the carbenoid may be delivered to the *syn*-face of the double bond, producing *syn*-**9** with very high diastereoselectivity (Fig. 3).³³

2.2. Cyclopropanation of 5-, 7- and 8-membered ring allylic amines

Having shown that the cyclopropanation of our model substrate **8** proceeds with excellent diastereoselectivity when Shi's carbenoid $[CF_3CO_2ZnCH_2I]$ is employed, the scope of the reaction with respect to the corresponding 5-, 7- and 8-membered ring allylic amines

16–18³⁴ was next investigated. Thus, treatment of the five-membered ring substrate **16** with Shi's carbenoid afforded *syn*-**19** in 84% vield and >99:1 dr. The relative syn-configuration within **19** was assigned by analogy to the stereochemical outome observed upon cyclopropanation of the six-membered ring substrate 8 (giving syn-9), and this assignment was further supported by 1 H NMR NOE analysis. This stereochemical outcome is consistent with our observations concerning the ammonium directed oxidation of five-membered ring substrate 16^{22c} and may be rationalised by coordination of the nitrogen atom to the zinc reagent followed by intramolecular delivery of the methylene unit to the syn-face, although minimisation of torsional strain in the transition state may also contribute.³⁵ Reaction of the 7- and 8-membered ring substrates 17 and 18 with CF₃CO₂ZnCH₂I gave anti-20 and anti-21 in 90 and 96% vield, respectively, and in >99:1 dr in each case (Scheme 4). The relative anti-configurations within 20 and 21 were proven unambiguously by single crystal X-ray analyses (Figs. 4 and 5). These results are consistent with the high levels of anti-diastereoselectivity observed in our studies concerning the epoxidations of 17 and 18 by *m*-CPBA in the presence of Cl_3CCO_2H .^{22c} The high degree of anti-diastereoselectivity in the cyclopropanation of **18** parallels the cyclopropanation of *cis*-cyclooct-2-en-1-ol,^{36,37} which has also been reported as proceeding with complete anti-diastereoselectivity; the accepted explanation for anti-cyclopropanation in this case is that, in the preferred low-energy chair-boat conformation³⁸ of the cyclooctene ring, addition reactions can only occur on the sterically more accessible face of the olefin, which is not blocked by the rest of the ring. Indeed, in the solid-state both allylic amine **18**³⁹ and *anti*cyclopropane **21** display chair-boat conformations, with the *N.N*dibenzylamino group occupying a pseudobowsprit position. The high level of *anti*-diastereoselectivity observed in

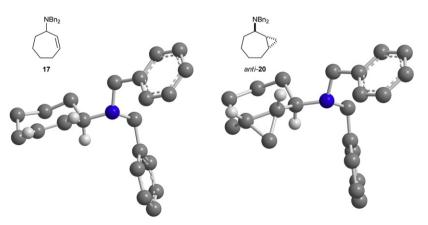


Fig. 4. Chem 3D representations of the single crystal X-ray structures of allylic amine 17 and anti-cyclopropane 20 (some H atoms have been omitted for clarity).

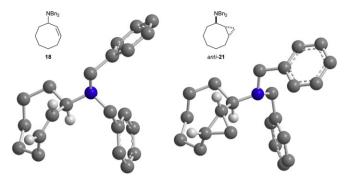
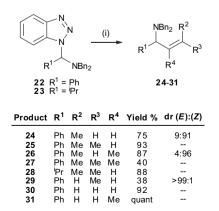



Fig. 5. Chem 3D representations of the single crystal X-ray structures of allylic amine 18 and anti-cyclopropane 21 (some H atoms have been omitted for clarity).

cyclopropanation of 17, however, is in contrast to the poorly diastereoselective cyclopropanation of cyclohept-2-en-1-ol with either the Simmons–Smith⁴⁰ (Zn/Cu, CH₂I₂) or Molander⁴¹ (Sm/Hg, CH₂I₂) reagents; in these cases the low diastereoselectivities suggest that the seven-membered ring is conformationally ill-defined, consistent with the known conformational lability of cycloheptene itself.⁴² The sterically-demanding N,N-dibenzylamino group may therefore be enforcing a more well-defined ground state conformation, which is reflected in the transition state for the cyclopropanation of 17 and the stereochemical outcome may therefore be simply ascribed to reaction on the least hindered face. In the solid-state structures of both allylic amine **17**⁴³ and *anti*-cyclopropane **20** the seven-membered ring adopts a chair-type conformation, and it has been shown that both cycloheptene⁴² and cycloheptene oxide⁴⁴ favour this conformation in solution. Therefore, chelation of the nitrogen atom to zinc resulting in chelation controlled cyclopropanation of neither 17 nor 18 need be invoked to explain the high diastereofacial selectivity, but may still be involved in stabilizing the transition state, especially when the relatively close proximity of the N,N-dibenzylamino group to the anti-face of the olefin is considered (Figs. 4 and 5).

2.3. Cyclopropanation of acyclic allylic amines

The effects of 1,2- and 1,3-allylic strain within the diastereoselective cyclopropanation reaction manifold were assessed by reaction of a range of acyclic *N*,*N*-dibenzyl substituted allylic amines **24**–**31** with Shi's carbenoid. The synthesis of the requisite substrates **24**–**31** employed the addition of a range of Grignard reagents to α -benzotriazolyl substituted amines **22** and **23**⁴⁵ to give allylic amines **24**–**31** in moderate to good yield and, where applicable, in sufficiently high diastereoisomeric purity (Scheme 5).

Scheme 5. Reagents and conditions: (i) RMgX, PhMe, 50 °C, 2 h.

Treatment of substrates **24–28** with Shi's carbenoid gave cyclopropanes **32–36** as single diastereoisomers (>99:1 dr) in typically high yield, although the reaction of (*E*)-**29** (which experiences far less 1,3-allylic strain than **24–28**) with Shi's carbenoid proceeded to give 92% conversion to **37** in 89:11 dr, which was isolated in 60% yield (Scheme 6).⁴⁶ The relative configurations within **33** and **36** were unambiguously established by single crystal X-ray analyses (Figs. 6 and 7), and the relative configurations within the remaining cyclopropanes **32**, **34**, **35** and **37** were assigned by analogy.

$R^{1} \xrightarrow{R^{4}} R^{3}$				(i)	R ¹	NBn ₂ R ² R ⁴ 32-37	R ³
Allylic amine	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R^4	Product	Yield %	dr ^a
24 25 26 27 28 29	Ph Ph Ph Ph Pr Ph	Me Me Me Me H	H H Me Me Me	H H Me H H	32 33 34 35 36 37 ^b	66 88 71 37 79 60	>99:1 >99:1 >99:1 >99:1 >99:1 >99:1 89:11

Scheme 6. Reagents and conditions: (i) Et₂Zn, CH₂I₂, TFA, CH₂Cl₂, rt, 1 h. [^acrude and purified; ^b92% conversion].

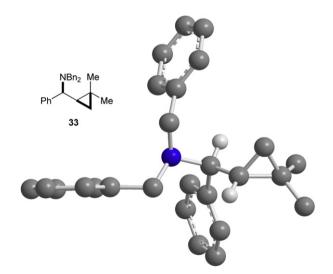


Fig. 6. Chem 3D representation of the single crystal X-ray structure of 33 (some H atoms have been omitted for clarity).

Treatment of allylic amines **30** and **31** (which contain a terminal olefin) with the deuterium labelled analogue of Shi's carbenoid [CF₃CO₂ZnCD₂I] gave cyclopropanes **39** and **41** in 72 and 94% yield, and 70:30 and 58:42 dr, respectively; comparable yields of the unlabelled cyclopropanes **38** and **40** were obtained upon reaction of **30** and **31** with CF₃CO₂ZnCH₂I (Scheme 7).⁴⁷

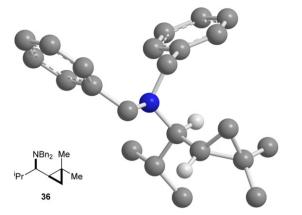
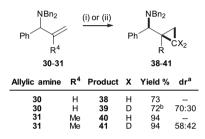



Fig. 7. Chem 3D representation of the single crystal X-ray structure of 36 (some H atoms have been omitted for clarity).

Scheme 7. Reagents and conditions: (i) Et₂Zn, CH₂l₂, TFA, CH₂Cl₂, rt, 1 h; (ii) Et₂Zn, CD₂l₂, TFA, CH₂Cl₂, rt, 3 h. [^acrude and purified; ^b86% conversion].

1,3-Allylic strain is minimised within the solid-state conformations of **33** and **36**, and it may also be reasoned that the corresponding allylic amines adopt a similar conformation in solution. The stereochemical outcome (and high levels of diastereoselectivity) observed in the cyclopropanation of acyclic allylic amines **24–28** is consistent with transition state model **43** in which 1,3-allylic strain is minimised and cyclopropanation occurs under chelation control (Fig. 8). The lower diastereoselectivity observed upon cyclopropanation of **29** (89:11 dr), **30** (70:30 dr) and **31** (58:42 dr) reflects their increased conformational freedom due to a decrease in 1,3-allylic strain.

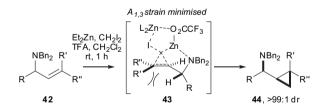
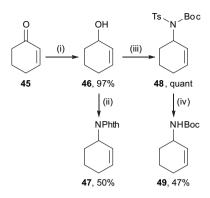
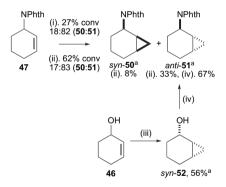
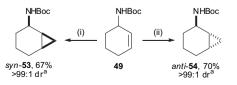



Fig. 8. Proposed transition state model for the directed cyclopropanation of acyclic allylic amines 24–28 with Shi's carbenoid.


2.4. Cyclopropanation of allylic imides, carbamates, amides and sulfonamides

The N-protecting groups were next varied, in order to probe the possibility of preparing the corresponding *anti*-cyclopropanes. Representative substrates **47** and **49** were chosen for initial screening. Thus, cyclohexenone **45** was reduced under Luche conditions to give allylic alcohol **46** in 97% yield. Subsequent Mitsunobu reaction with either phthalimide or *N*-(*tert*-butoxycarbonyl)-*p*-toluenesulfonamide gave **47** and **48** in 50% and quantitative yield, respectively. Finally, **48** was treated with sodium naphthalide to afford *tert*-butyl carbamate **49** in 47% yield (Scheme 8).


Scheme 8. Reagents and conditions: (i) NaBH₄, CeCl₃·7H₂O, MeOH; (ii) phthalamide, PPh₃, DEAD, THF; (iii) TsNHBoc, PPh₃, DEAD, THF, rt, 24 h; (iv) sodium naphthalide, THF, rt, 3 h. [NPhth=phthalimido].

Reaction of 47 with Zn(CH₂I)₂ proceeded to 27% conversion (after 3 h), giving an 18:82 mixture of syn-**50**/anti-**51**,⁴⁸ whereas reaction of 47 with CF₃CO₂ZnCH₂I under identical conditions gave 62% conversion to a 17:83 mixture of syn-50/anti-51, from which syn-50 and anti-51 were isolated as single diastereoisomers (>99:1 dr) in 8 and 33% yield, respectively. The relative configuration within anti-51 was initially established via independent chemical synthesis from cyclohex-2-enol **46**:⁴⁹ cyclopropanation of allylic alcohol **46** with Denmark's reagent $[Zn(CH_2Cl)_2]$ gave syn-52 in 56% yield and >99:1 dr. Installation of the phthalimido group and inversion of configuration was then achieved by Mitsunobu reaction of syn-52 with phthalimide to give anti-51 in 67% yield and >99:1 dr (Scheme 9). Subsequent single crystal X-ray analysis of syn-50 allowed its relative configuration (and therefore also the relative configuration within *anti*-**51**) to be unambiguously assigned.⁵⁰ Although the diastereoselectivity of cyclopropanation appears to be predominantly a result of steric control, competing chelation by one of the carbonyl groups may give rise to the minor product syn-50.

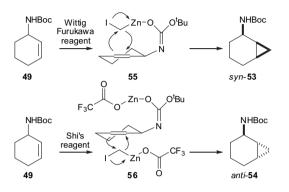
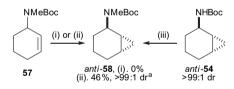
Scheme 9. Reagents and conditions: (i) Et_2Zn , CH_2I_2 , CH_2CI_2 , rt, 3 h; (ii) Et_2Zn , CH_2I_2 , TFA, CH_2CI_2 , rt, 3 h; (iii) Et_2Zn , ICH_2CI , CH_2CI_2 , rt, 1 h; (iv) phthalimide, PPh₃, DEAD, THF, rt, 24 h. [^alsolated in >99:1 dr; NPhth=phthalimido].

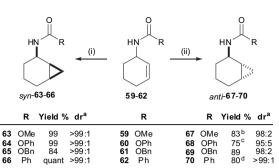
Cyclopropanation of allylic carbamate **49** was next investigated. Treatment of **49** with the Wittig–Furukawa reagent $[Zn(CH_2I)_2]$ was found to give *syn*-cyclopropane **53** in >99:1 dr⁵¹ and 67% isolated yield, whereas treatment of **49** with Shi's carbenoid $[CF_3CO_2ZnCH_2I]$ gave the corresponding *anti*-cyclopropane **54** in 70% yield and >99:1 dr (Scheme 10). The relative configurations

Scheme 10. Reagents and conditions: (i) Et₂Zn, CH₂I₂, CH₂Cl₂, rt, 3 h; (ii) Et₂Zn, CH₂I₂, TFA, CH₂Cl₂, rt, 3 h. [^acrude and purified].

within *syn*-**53** and *anti*-**54** were established via chemical correlation (vide infra).

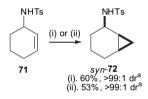
The complementary diastereoselectivities of this reaction are postulated to be a result of initial formation of an intermediate zinc complex by deprotonation of the NH proton of the carbamate. In the case of $Zn(CH_2I)_2$ the co-ordinated zinc carbenoid **55** is able to effect intramolecular cyclopropanation of the double bond to give *syn*-**53**, whereas with CF₃CO₂ZnCH₂I a second equivalent of the zinc reagent is required to undergo intermolecular cyclopropanation of the double bond by approach to the least hindered face of **56**, giving the corresponding *anti*-cyclopropane **54** (Fig. 9).⁵²

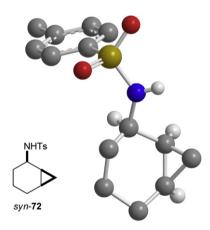




Fig. 9. Proposed mechanistic rationale for the stereodivergent cyclopropanation of allylic carbamate 49 with either $Zn(CH_2l)_2$ or $CF_3CO_2ZnCH_2l$.

Consistent with this hypothesis, treatment of allylic carbamate **49** with 1.0 equiv of $Zn(CH_2I)_2$ gave 37% conversion to *syn*-**53** after 1 h, whereas analogous treatment of **49** with 1.0 equiv of CF₃CO₂ZnCH₂I gave no observable cyclopropanation products. Moreover, treatment of the corresponding *N*-methyl-*N*-Boc protected substrate **57**²³ with 2.0 equiv of Zn(CH₂I)₂ gave no reaction. When 2.0 equiv of CF₃CO₂ZnCH₂I was employed, however, *anti*-**58** was isolated in 46% yield and >99:1 dr. In order to corroborate this stereochemical assignment, an authentic sample of *anti*-**58** was prepared via N-methylation of *anti*-**54** (Scheme 11).

Scheme 11. Reagents and conditions: (i) Et₂Zn, CH₂l₂, CH₂Cl₂, rt, 1 h; (ii) Et₂Zn, CH₂l₂, TFA, CH₂Cl₂, rt, 1 h; (iii) NaH, Mel, THF, 0 $^{\circ}$ C, 16 h. [^acrude and purified].


A range of other carbamates **59–61**⁵³ were next subjected to the optimised cyclopropanation conditions. In each case, treatment of carbamates **59–61** with the Wittig–Furukawa reagent [Zn(CH₂I)₂] gave the corresponding *syn*-cyclopropanes **63–65** in >99:1 dr, whereas similar treatment of 59-61 with Shi's carbenoid [CF₃CO₂ZnCH₂I] gave the corresponding anti-cyclopropanes 67–69 in \geq 95:5 dr. Furthermore, this stereodivergent protocol also proved to be applicable to the cyclopropanation of allylic amides: treatment of benzamide **62** with the Wittig–Furukawa reagent gave syn-**66** in quantitative yield and >99:1 dr and treatment of 62 with Shi's carbenoid gave anti-70 in 80% yield and >99:1 dr (Scheme 12). The relative configurations within syn-65 and anti-69 were initially assigned by ¹H NMR NOE analyses. In particular, anti-69 exhibited a strong enhancement between C(2)H and $C(7)H_A$. Crucially, this enhancement was absent for syn-65, which instead showed a strong enhancement between NH and $C(7)H_A$. Subsequent chemical correlation studies unambiguously confirmed the assigned relative configurations within syn-65 and anti-69; the relative configurations within the remaining cyclopropanated products 63, 64, 66, 67, 68 and


Scheme 12. Reagents and conditions: (i) Et₂Zn, CH₂I₂, CH₂Cl₂, rt, 1 h; (ii) Et₂Zn, CH₂I₂, TFA, CH₂Cl₂, rt, 1 h. [^acrude and purified; ^b88% conversion; ^c80% conversion; ^d92% conversion].

70 were assigned by analogy to those of the *N*-Boc and *N*-Cbz protected analogues **53**, **54**, **65** and **69**.

Surprisingly, cyclopropanation of *N*-tosyl protected **71** with either the Wittig–Furukawa reagent $[Zn(CH_2I)_2]$ or Shi's carbenoid $[CF_3CO_2ZnCH_2I]$ gave the same product *syn*-**72** in 60 and 53% yield, respectively, and in >99:1 dr in each case (Scheme 13). The relative *syn*-configuration within **72** was initially established by ¹H NMR NOE studies and was then unambiguously established by single crystal X-ray analysis (Fig. 10).

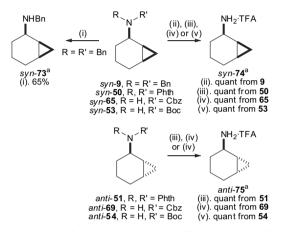
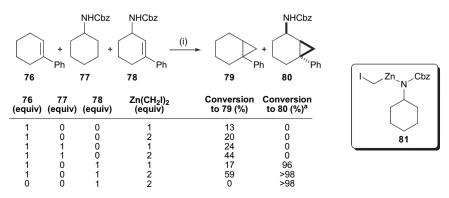

Scheme 13. Reagents and conditions: (i) Et₂Zn, CH₂I₂, CH₂Cl₂, rt, 1 h; (ii) Et₂Zn, CH₂I₂, TFA, CH₂Cl₂, rt, 12 h. [^acrude and purified].

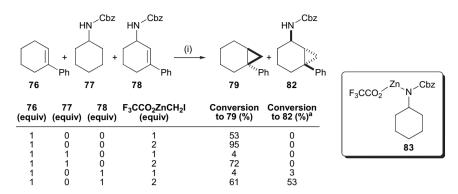
Fig. 10. Chem 3D representation of the single crystal X-ray structure of *syn*-**72** (some H atoms have been omitted for clarity).

2.5. N-Deprotections

In order to confirm the assigned relative configurations within these cyclopropanated products and to demonstrate the utility of this protocol in synthesis, deprotection of the *N*,*N*-dibenzyl, phthalimido, *N*-Cbz and *N*-Boc protected substrates was undertaken. It was found that under 1 atm of hydrogen, in the presence of Pd/C, selective mono-debenzylation of *syn*-**9** could be achieved allowing isolation of *syn*-**73** in 65% yield. Under more forcing conditions (5 atm) hydrogenolysis of *syn*-**9**, followed by treatment with TFA, gave *syn*-**74** in quantitative yield; in each case, no products arising from cleavage of the cyclopropane ring were observed. Deprotection of the phthalimido groups within *syn*-**50** and *anti*-**51** was achieved upon treatment with hydrazine, giving *syn*-**74** and *anti*-**75** (after treatment with TFA) in quantitative yield and >99:1 dr in each case. Deprotection of the *N*-Cbz protected substrates *syn*-**65** and *anti*-**69** via hydrogenolysis also gave *syn*-**74** and *anti*-**75** (following treatment with TFA), both in quantitative yield and >99:1 dr; again no products arising from cleavage of the cyclopropane ring were observed in either case. Cleavage of the *N*-Boc protecting groups within *syn*-**53** and *anti*-**54** was achieved upon treatment with TFA giving *syn*-**74** and *anti*-**75** directly, in quantitative yield and >99:1 dr in each case (Scheme 14). These studies therefore allowed for the relative configurations within **53**, **54**, **65** and **69** to be unambiguously assigned.



Scheme 14. Reagents and conditions: (i) H_2 (1 atm), Pd/C (50 wt %), $MeOH/H_2O/ACOH$ (40:4:1), rt, 16 h; (ii) H_2 (5 atm), Pd/C (50% w/w), $MeOH/H_2O/ACOH$ (40:4:1), rt, 12 h; (iii) NH_2NH_2 , MeOH, reflux, 12 h; (iv) H_2 (1 atm), MeOH/EtOAc (4:1), rt, 1 h; (v) TFA, CH_2CI_2 , rt, 1 h. [^aIsolated in >99:1 dr; NPhth=phthalimido].


2.6. Cyclopropanation of allylic carbamates: mechanistic investigations

Having proposed that *syn*-cyclopropanation of the allylic carbamates occurs via intramolecular cyclopropanation, whereas *anti*cyclopropanation occurs via intermolecular cyclopropanation, we wished to design a series of competition experiments to verify this hypothesis. We have recently reported the application of this stereodivergent cyclopropanation protocol in the syntheses of *trans*-SCH-A⁵⁴ and its epimer *cis*-SCH-A^{11b} via the cyclopropanation of a C(3)-aryl substituted allylic carbamate^{21b} in which C(3)-phenyl substituted allylic carbamate **78** was employed as a model system for reaction optimisation. Commercially available 1-phenylcyclohexene **76** (bp 251–253 °C) was selected as a suitable mimic for the olefin functionality within C(3)-phenyl substituted allylic carbamate **78**.⁵⁵ In addition, it was proposed that **77**.⁵⁶ could be used as a mimic for the carbamate functionality within **78**. Reaction of 1-phenylcyclohexene 76 with 1.0 equiv of Zn(CH₂I)₂ for 60 min resulted in 13% conversion to cyclopropane **79**, whilst reaction with 2.0 equiv of Zn(CH₂I)₂ resulted in 20% conversion to 79. Under identical conditions reaction of 76 in the presence of 1.0 equiv of carbamate 77 resulted in 24% conversion to 79 when 1.0 equiv of Zn(CH₂I)₂ was used and 44% conversion to 79 with 2.0 equiv of Zn(CH₂I)₂. The increased reactivity of **76** in the presence of carbamate 77 can be rationalized by the formation of intermediate iodomethylzinc amide 81 which, due to the electron withdrawing nature of the carbamate functionality, is postulated to be a more reactive carbenoid than Zn(CH₂I)₂, consistent with the observations of Shi et al.^{13c} It should be noted, however, that the observed rate of intermolecular cyclopropanation mediated by iodomethylzinc amide 81 is still significantly slower than that observed for the cyclopropanation of allylic carbamate **78**,⁵⁷ consistent with intramolecular cyclopropanation in the latter case. In support of this hypothesis, cyclopropanation of 1-phenylcyclohexene 76 in the presence of 1.0 equiv of allylic carbamate 78 was next investigated. Reaction with 1.0 equiv of Zn(CH₂I)₂ resulted in 17% conversion of **76** to **79** and 96% conversion of **78** to **80**,⁵⁸ whereas reaction with 2.0 equiv of $Zn(CH_2I)_2$ resulted in 59% conversion of **76** to **79** and >98% conversion of 78 to 80 (Scheme 15). Moreover, further kinetic studies⁵⁹ revealed that cyclopropanation of **78** with 2.0 equiv of $Zn(CH_2I)_2$ was found to reach completion after only 25 min, whereas treatment of **76** with 2.0 equiv of Zn(CH₂I)₂ for 25 min only produced **79** in 27% conversion. These results strongly suggest that 78 reacts via an intramolecular cyclopropanation step, since the reaction rate is significantly higher than that observed for intermolecular cyclopropanation in the presence of an external carbamate (the ratio of **79/80** is \sim 1:8 respectively after 10 min).

The same series of experiments were next performed with CF₃CO₂ZnCH₂I, in order to probe the proposed intermolecular nature of the anti selective cyclopropanation reaction manifold. Reaction of 1-phenylcyclohexene 76 with 1.0 equiv of CF₃CO₂ZnCH₂I resulted in 53% conversion to 79, whilst cyclopropanation of 76 with 2.0 equiv of CF₃CO₂ZnCH₂I proceeded to give **79** in 95% conversion. In the presence of 1.0 equiv of carbamate 77, reaction of 76 with 1.0 equiv of CF₃CO₂ZnCH₂I gave **79** in only 4% conversion, consistent with 1.0 equiv of CF₃CO₂ZnCH₂I being consumed by deprotonation of carbamate 77 to form intermediate 83, whereas reaction with 2.0 equiv of CF₃CO₂ZnCH₂I proceeded to give 79 in 72% conversion. As expected, reaction of **76** in the presence of allylic carbamate 78 and only 1.0 equiv of CF3CO2ZnCH2I resulted in extremely low conversion to either 79 or 82. Reaction of 76 and 78 with 2.0 equiv of CF₃CO₂ZnCH₂I resulted in 53% conversion of 78 to 82 and 61% conversion of 76 to 79. Importantly, the carbenoid appears to show no strong preference for cyclopropanation of substrate 78 over 1-phenylcyclohexene 76, consistent with an intermolecular rather than intramolecular cyclopropanation mechanism in each case (Scheme 16). These experiments support

Scheme 15. Reagents and conditions: (i) ZnEt₂, CH₂I₂, CH₂Cl₂, rt, 60 min. [^a>99:1 dr].

Scheme 16. Reagents and conditions; (i) ZnEt₂, CH₂I₂, TFA, CH₂Cl₂, rt, 60 min. [^a>99:1 dr].

the proposed rationale that *syn*-cyclopropanation arises through chelation control whilst *anti*-cyclopropanation arises from a sterically directed intermolecular reaction.

3. Conclusion

In conclusion, a highly chemo- and diastereoselective protocol for the cyclopropanation of a range of cyclic and acyclic tertiary allylic amines employing Shi's carbenoid [CF₃CO₂ZnCH₂I] has been developed. The high levels of diastereoselectivity observed in these systems may be rationalised by chelation of the nitrogen atom to the carbenoid, which is then delivered to the *syn*-face of the olefin. In addition, the reaction of a range of cyclic allylic amides and carbamates with either the Wittig–Furukawa reagent [Zn(CH₂I)₂] or Shi's carbenoid provides access to both *syn*- and *anti*-diastereoisomers of the corresponding cyclopropanes, respectively, in high dr. This stereodivergent protocol is consistent with co-ordination of the zinc carbenoid to the nitrogen atom followed by either (i) intramolecular *syn*-cyclopropanation in the case of Zn (CH₂I)₂ or (ii) intermolecular *anti*-cyclopropanation by a second equivalent of the zinc reagent in the case of CF₃CO₂ZnCH₂I.

4. Experimental

4.1. General experimental

All reactions involving organometallic or other moisture-sensitive reagents were carried out under a nitrogen or argon atmosphere using standard vacuum line techniques and glassware that was flame dried and cooled under nitrogen before use. Solvents were dried according to the procedure outlined by Grubbs et al.⁶⁰ Water was purified by an Elix[®] UV-10 system. All other reagents were used as supplied (analytical or HPLC grade) without prior purification. Organic layers were dried over MgSO₄. Thin layer chromatography was performed on aluminium plates coated with 60 F_{254} silica. Plates were visualised using UV light (254 nm), iodine, 1% aq KMnO₄, or 10% ethanolic phosphomolybdic acid. Flash column chromatography was performed on Kieselgel 60 silica.

Melting points were recorded on a Gallenkamp Hot Stage apparatus and are uncorrected. Optical rotations were recorded on a Perkin–Elmer 241 polarimeter with a water-jacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg cm² g⁻¹ and concentrations in g/100 mL. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as either a thin film on NaCl plates (film) or a KBr disc (KBr), as stated. Selected characteristic peaks are reported in cm⁻¹. NMR spectra were recorded on Bruker Avance spectrometers in the deuterated solvent stated. Spectra were recorded at rt unless otherwise stated. The field was locked by external referencing to the relevant deuteron resonance. Low-

resolution mass spectra were recorded on either a VG MassLab 20–250 or a Micromass Platform 1 spectrometer. Accurate mass measurements were run on either a Bruker MicroTOF internally calibrated with polyalanine, or a Micromass GCT instrument fitted with a Scientific Glass Instruments BPX5 column (15 m×0.25 mm) using amyl acetate as a lock mass.

4.2. General experimental procedures

4.2.1. General procedure 1: cyclopropanation with the Wittig–Furukawa reagent [Zn(CH₂I)₂]. CH₂I₂ (4.0 equiv) was added dropwise to a stirred solution of ZnEt₂ (1.0 M in hexanes, 2.0 equiv) in CH₂Cl₂ (0.5 M w.r.t. substrate) at -78 °C. The resultant mixture was vigorously stirred at 0 °C for 15 min resulting in the formation of a white precipitate. The requisite substrate (1.0 equiv) was then added to the reaction mixture, either neat or as a solution in CH₂Cl₂. The reaction mixture was stirred at rt for the specified time then satd aq Na₂EDTA (~1 mL/mmol) was added. The resultant mixture was vigorously stirred for 5 min then diluted with CH₂Cl₂ (~10 mL/ mmol) and satd aq NaHCO₃ (~10 mL/mmol). The aqueous layer was extracted with three portions of CH₂Cl₂ and the combined organic extracts were dried and concentrated in vacuo.

Safety note: The preparation of $Zn(CH_2I)_2$ on a large-scale (>8 mmol) has been reported to be potentially explosive.⁶¹ The modified procedure described above appears to significantly reduce the chance of explosion, and has been performed numerous times on large-scale (>20 mmol) without incident. The principal difference is the careful addition of CH_2I_2 to $ZnEt_2$ at -78 °C, which allows the gradual exothermic formation of $Zn(CH_2I)_2$.

4.2.2. General procedure 2: cyclopropanation with Shi's carbenoid [CF₃CO₂ZnCH₂I]. CH₂I₂ (4.0 equiv) was added dropwise to a stirred solution of ZnEt₂ (1.0 M in hexanes, 2.0 equiv) in CH₂Cl₂ (0.5 M) at $-78 \degree$ C and the resultant mixture was allowed to stir at 0 °C for 15 min resulting in the formation of a white precipitate. TFA (2.0 equiv) was then added to the mixture resulting in the rapid formation of a homogeneous colourless solution which was allowed to stir at 0 °C for 15 min. The requisite substrate (1.0 equiv) was added to the mixture, either neat or as a solution in CH₂Cl₂. The resultant mixture was stirred at rt for the specified time then satd aq Na₂EDTA ($\sim 1 \text{ mL/mmol}$) was added. The resultant mixture was vigorously stirred for 5 min then diluted with CH_2Cl_2 (~10 mL/mmol) and satd aq NaHCO₃ (~10 mL/ mmol). The aqueous layer was extracted with three portions of CH₂Cl₂ and the combined organic extracts were dried and concentrated in vacuo.

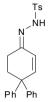
4.2.3. General procedure 3: synthesis of acyclic allylic amines. Method A: The requisite Grignard reagent (1.5 equiv) was added via syringe to a stirred solution of the requisite α -benzotriazole (1.0 equiv) in

PhMe (0.4 M) at rt. The resultant suspension was stirred at 50 °C for 2 h then allowed to cool to rt before satd aq NH₄Cl was carefully added. The resultant mixture was diluted with Et₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic extracts were washed sequentially with 1.0 M aq NaOH and brine, then dried and concentrated in vacuo.

Method B: The requisite vinyl bromide (1.5 equiv) was added dropwise to a stirred suspension of Mg turnings (1.5 equiv) and I_2 (cat) in THF (0.5 M) at rt. The resultant suspension was gently heated to initiate Grignard formation at which point the solution turned colourless. The reaction mixture was heated at reflux for 2 h (or until all the Mg had been consumed), then allowed to cool to rt before being transferred to a stirred solution of α -benzotriazole (1.0 equiv) in PhMe (0.25 M) at rt. The resultant suspension was stirred at 50 °C for 2 h then allowed to cool to rt before satd aq NH₄Cl was carefully added. The reaction mixture was then diluted with Et₂O and the aqueous layer was extracted with three portions of Et₂O. The combined organic extracts were washed sequentially with 1.0 M aq NaOH and brine, then dried and concentrated in vacuo.

4.2.4. General procedure 4: synthesis of allylic carbamates and amides. The requisite alcohol (1.0 equiv), either neat or as a solution in either THF or 1,4-dioxane, was added to a stirred solution of Bi(OTf)₃ (0.05 equiv), KPF₆ (0.05 equiv), MgSO₄ (~150 mg/mmol) and the requisite amide or carbamate (1.5 equiv) in THF or 1,4-dioxane (0.1–0.2 M) at rt. The resultant mixture was allowed to stir at rt for the specified time, then filtered through a pad of Celite (eluent Et₂O or EtOAc). The filtrate was then concentrated in vacuo.

4.3. (1RS,2SR,3RS)-N,N-Dibenzylbicyclo[4.1.0]heptan-2-amine 9


Following General procedure 2, **8**²⁴ (277 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (0.15 mL, 2.0 mmol) were reacted in CH₂Cl₂ (2.0 mL) for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1), **9** as a colourless oil (268 mg, 92%, >99:1 dr); ν_{max} (film) 2930 (C–H), 1494, 1453; δ_H (400 MHz, CDCl₃) 0.26–0.30 (1H, m, C(7)H_A), 0.62–0.68 (1H, m, C(7)H_B), 0.75–0.84 (1H, m, C(6) H), 0.97–1.08 (3H, m, C(1)H, C(4)H_A, C(3)H_A), 1.16–1.25 (1H, m, C(5) H_A), 1.36–1.42 (1H, m, C(4)H_B), 1.45–1.53 (1H, m, C(3)H_B), 1.73–1.80 (1H, m, C(5)H_B), 3.00-3.09 (1H, m, C(2)H), 3.64 (2H, d, J 14.1, N (CH_APh)₂), 3.69 (2H, d, J 14.1, N(CH_BPh)₂), 7.09–7.13 (2H, m, Ph), 7.18–7.22 (4H, m, Ph), 7.31–7.33 (4H, m, Ph); δ_{C} (100 MHz, CDCl₃) 8.7 (C(6)), 11.2 (C(7)), 12.7 (C(1)), 22.5 (C(3)), 23.8 (C(4), C(5)), 54.4 (C(2), N(CH₂Ph)₂), 126.6, 128.2, 128.6 (*o*,*m*,*p*-Ph), 141.4 (*i*-Ph); *m*/*z* (ESI⁺) 292 ([M+H]⁺, 100%); HRMS (ESI⁺) $C_{21}H_{26}N^+$ ([M+H]⁺) requires 292.2065, found 292.2065.

4.3.1. X-ray crystal structure determination for **9**·HBF₄. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **9** ·HBF₄ [$C_{21}H_{26}BF_4N$]: *M*=379.25, monoclinic, space group *P* $2_1/c$, *a*=9.3534(2) Å, *b*=15.3985(3) Å, *c*=13.8619(4) Å, β =100.7273(9)°, *V*=1961.62(8) Å³, *Z*=4, μ =0.100

mm⁻¹, colourless plate, crystal dimensions= $0.1 \times 0.1 \times 0.1$ mm. A total of 4489 unique reflections were measured for $5 < \theta < 27$ and 2693 reflections were used in the refinement. The final parameters were wR_2 =0.146 and R_1 =0.057 [I>3.0 σ (I)]. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783809. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

4.4. 4,4-Diphenyl-2-cyclohexenone tosylhydrazone 85

A solution of tosylhydrazide (825 mg, 4.43 mmol) in PhMe (5 mL) was added to a stirred solution of 4,4-diphenyl-2-cyclohexen-1-one **84** (1.00 g, 4.03 mmol) in MeOH (10 mL) and the resultant mixture was stirred at rt for 16 h. The reaction mixture was then concentrated in vacuo and the residue was dissolved in EtOAc (25 mL). The resultant solution was washed with H₂O (3×10 mL) then dried and concentrated in vacuo to give **85** as a pale yellow solid (1.62 g, 96%);⁶³ mp 165 °C (dec) (lit.⁶³ mp 191–192 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 2.23 (2H, t, *J* 6.3, C(5)H₂), 2.41–2.46 (2H, m, C(6) H₂) overlapping 2.44 (3H, s, CH₃), 6.37 (1H, d, *J* 10.2, C(2)H), 6.60 (1H, d, *J* 10.2, C(3)H), 7.15–7.38 (12H, m, Ar), 7.66 (1H, br s, NH), 7.85 (2H, d, *J* 8.3, Ar).

4.5. 4,4-Diphenylcyclohex-1-ene 12

Catechol borane (0.23 mL, 2.2 mmol) was added to a stirred solution of **85** (833 mg, 2.0 mmol) in CHCl₃ (5 mL) at 0 °C and the resultant mixture was stirred at rt for 2 h. NaOAc·3H₂O (816 mg, 6.0 mmol) was then added and the reaction mixture was heated at 60 °C for 1 h before being allowed to cool to rt. H₂O (5 mL) was added and the resultant mixture was extracted with CH₂Cl₂ (3×10 mL). The combined organic extracts were dried and concentrated in vacuo. Purification by flash column chromatography (eluent 30–40 °C petrol/EtOAc, 1:0 to 20:1 gradient elution) gave **12** as a white solid (351 mg, 75%);⁶³ mp 59–60 °C (lit.⁶³ mp 62–63 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.77–1.83 (2H, m, C(5)H₂), 2.38 (2H, t, *J* 6.1, C(6)H₂), 2.61–2.64 (2H, m, C(3)H₂), 5.64–5.70 (1H, m, C (1)H), 5.85–5.90 (1H, m, C(2)H), 7.15–7.29 (10H, m, *Ph*).

4.6. (RS)-N,N-Dibenzylcyclohexanamine 13

A mixture of cyclohexylamine **86** (0.44 mL, 4.0 mmol) and BnBr (0.96 mL, 8.0 mmol) in 0.5 M aq NaOH (17.6 mL, 8.8 mmol) was heated at 80 °C (microwave) for 30 min. The reaction mixture was then allowed to cool to rt and extracted with EtOAc (3×15 mL).

The combined organic extracts were then dried and concentrated in vacuo. Purification by flash column chromatography (30–40 °C petrol/EtOAc, 1:0 to 5:1 gradient elution) gave **13** as a white solid (940 mg, 84%);⁶⁴ mp 61–62 °C (lit.⁶⁴ mp 62 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.13–1.44 (6H, m, 6×*CH*₂), 1.81–1.89 (2H, m, 2×*CH*₂), 1.95–2.01 (2H, m, 2×*CH*₂), 2.56 (1H, tt, *J* 11.6, 3.4, *CH*NBn₂), 3.72 (4H, s, N(*CH*₂Ph)₂), 7.25–7.28 (2H, m, *Ph*), 7.34–7.49 (8H, m, *Ph*).

4.7. (RS,RS)-3,3-Diphenylbicyclo[4.1.0]heptane 14

Following General procedure 2, 12 (28 mg, 0.10 mmol), ZnEt₂ $(0.2 \text{ mL}, 0.2 \text{ mmol}), \text{ CH}_2\text{I}_2$ $(30 \mu\text{L}, 0.4 \text{ mmol})$ and TFA $(15 \mu\text{L}, 100 \text{ mm})$ 0.2 mmol) were reacted in CH₂Cl₂ (0.2 mL) for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 20:1), **14** as a colourless oil (30 mg, quant); ν_{max} (film) 3055, 2995, 2935, 2860 (C-H), 1600, 1495, 1465, 1110, 1020, 765, 740, 700; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.12–0.16 (1H, m, C(7) $H_{\rm A}$), 0.66 (1H, app t, J 8.8, 4.5, C(7)H_B), 0.82 (1H, app tt, J 9.3, 5.0, C(6)H), 1.19–1.23 (1H, m, C(1)H), 1.44 (1H, app tt, J 13.5, 5.3, C(5)H_A), 1.65 (1H, app dd, J 15.0, 2.6, C(2)H_A), 1.81–1.86 (1H, m, C(5)H_B), 1.96 (1H, app td, J 13.2, 4.5, C(4)*H*_A), 2.13 (1H, app ddt, *J* 13.1, 5.0, 2.6, C(4)*H*_B), 2.95 (1H, app ddd, J 15.0, 9.2, 2.8, C(2)H_B), 7.13-7.37 (10H, m, Ph); δ_C (100 MHz, CDCl₃) 9.4, 9.6 (C(1) and C(6)), 10.7 (C(7)), 19.8 (C(5)), 30.2 (C(4)), 38.1 (C(2)), 45.0 (C(3)), 125.4, 125.5, 126.6, 127.9, 128.0, 128.6 (o,m,p-*Ph*), 146.9, 152.0 (*i-Ph*); m/z (FI⁺) 248 ([M]⁺, 100%); HRMS (FI⁺) C₁₉H₂₀⁺ ([M]⁺) requires 248.1572, found 248.1565.

4.8. (1RS,2SR,3RS)-N,N-Dibenzylbicyclo[3.1.0]hexan-2-amine 19

Following General procedure 2, 16^{34} (263 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (0.15 mL, 2.0 mmol) were reacted in CH₂Cl₂ (2.0 mL) for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 9:1), **19** as a yellow oil (233 mg, 84%, >99:1 dr); ν_{max} (film) 3027, 2928, 2864, 2799 (C–H), 1493, 1453; δ_{H} (400 MHz, CDCl₃) 0.31–0.36 (1H, m, C(6)H_A), 0.56 (1H, app q, *J* 4.0, C(6)H_B), 1.18–1.24 (2H, m, C(5)H, C(3)H_A), 1.28–1.32 (1H, m, C(1) H), 1.61–1.66 (1H, m, C(3)H_B), 1.69–1.74 (2H, m, C(4)H₂), 3.41–3.46 (1H, m, C(2)H), 3.71–3.78 (4H, m, N(CH₂Ph)₂), 7.22–7.27 (2H, m, Ph), 7.33 (4H, app t, *J* 7.4, Ph), 7.42 (4H, d, *J* 7.4, Ph); δ_{C} (100 MHz, CDCl₃) 5.1 (C(6)), 15.1 (C(5)), 17.8 (C(1)), 23.0 (C(3)), 25.5 (C(4)), 55.9 (N(CH₂Ph)₂), 63.3 (C(2)), 126.5, 128.0, 128.8 (*o*,*m*,*p*-Ph), 140.7 (*i*-Ph); *m*/*z* (ESI⁺) 278 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₀H₂₄N⁺ ([M+H]⁺) requires 278.1903, found 278.1901.

4.9. (1RS,2RS,7SR)-N,N-Dibenzylbicyclo[5.1.0]octan-2-amine 20

Following General procedure 2, 17^{34} (1.00 g, 3.43 mmol), ZnEt₂ (6.86 mL, 6.86 mmol), CH₂I₂ (1.10 mL, 13.7 mmol) and TFA (0.51 mL, 6.86 mmol) in CH₂Cl₂ (7 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent

30–40°C petrol/EtOAc, 1:0 to 99:1 gradient elution), **20** as a white crystalline solid (940 mg, 90%, >99:1 dr); mp 43–45 °C; ν_{max} (KBr) 3025, 2920, 2850 (C–H), 1495, 1455, 1125, 1030, 975, 740, 700, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.08 (1H, q, *J* 4.7, C(8)*H*_A), 0.48–0.57 (1H, m, C(6)*H*_A), 0.72–0.78 (1H, m, C(7)*H*), 0.90 (1H, app td, *J* 8.0, 4.3, C(8)*H*_B), 0.97–1.13 (2H, m, C(1)*H* and C(4)*H*_A), 1.20–1.29 (1H, m, C(5)*H*_A), 1.65–1.76 (2H, m, C(3)*H*_A, C(5)*H*_B), 1.87–1.92 (1H, m, C(4)*H*_B), 1.98–2.03 (1H, m, C(3)*H*_B), 2.08–2.14 (1H, m, C(6)*H*_A), 2.22 (1*H*, t, *J* 9.8, C(2)*H*), 3.75 (4H, s, N(CH₂Ph)₂), 7.21–7.25 (2H, m, *Ph*), 7.32 (4H, app t, *J* 7.4, *Ph*), 7.45 (4H, app d, *J* 7.4, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 12.8 (*C*(7)), 15.6, 15.6 (*C*(1), *C*(8)), 28.9 (*C*(5)), 30.1 (*C*(4)), 31.1 (*C*(6)), 35.5 (*C*(3)), 54.2 (N(CH₂Ph)₂), 61.4 (C(2)), 128.1, 128.5, 128.5 (*o*,*m*,*p*-*Ph*), 141.1 (*i*-*Ph*); *m/z* (CI⁺) 306 ([M+H]⁺, 100%); HRMS (CI⁺) C₂₂H₂₈N⁺ ([M+H]⁺) requires 306.2222, found 306.2233.

4.9.1. X-ray crystal structure determination for **20**. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **20** [$C_{22}H_{27}N$]: M=305.46, monoclinic, space group C 2/c, a=25.5945(4)Å, b=9.9031(2)Å, c=14.6450(2)Å, $\beta=104.7501(8)^{\circ}$, V=3589.67(10)Å³, Z=8, $\mu=0.065$ mm⁻¹, colourless plate, crystal dimensions=0.05 × 0.05 × 0.1 mm. A total of 4068 unique reflections were measured for $5<\theta<27$ and 4068 reflections were used in the refinement. The final parameters were $wR_2=0.116$ and $R_1=0.070$ [$I>-3.0\sigma(I)$]. Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783810. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

4.10. (1*RS*,2*RS*,8*SR*)-*N*,*N*-Dibenzylbicyclo[6.1.0]octan-2-amine 21

Following General procedure 2, **18**³⁴ (916 mg, 3.0 mmol), ZnEt₂ (6.0 mL, 6.0 mmol), CH₂I₂ (0.97 mL, 12.0 mmol) and TFA (0.45 mL, 6.0 mmol) in CH₂Cl₂ (6 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/EtOAc, 1:0 to 9:1 gradient elution), 21 as a white crystalline solid (920 mg, 96%, >99:1 dr); mp 80-82 °C; *v*_{max} (KBr) 3060, 2925, 2850 (C–H), 1490, 1455, 1125, 1025, 905, 745, 700, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.03–0.06 (1H, m, C(9) $H_{\rm A}$), 0.36–0.46 (1H, m, C(7)H_A), 0.69–0.84 (3H, m, C(1)H, C(8)H and C(9)H_B), 0.97-1.05 (1H, m, C(5)H_A), 1.23-1.33 (1H, m, C(6) H_A), 1.42–1.69 (5H, m, C(3) H_A , C(4) H_2 , C(5) H_B and C(6) H_B), 1.77-1.82 (1H, m, C(3)H_B), 1.87-1.95 (1H, m, C(7)H_B), 2.24 (1H, app dt, J 10.4, 3.3, C(2)H), 3.63 (2H, d, J 13.8, N(CH_APh)₂), 3.84 (2H, d, J 13.8, N(CH_BPh)₂), 7.22-7.25 (2H, m, Ph), 7.32 (4H, app t, J 7.4, Ph), 7.44 (4H, app d, J 7.4, Ph); δ_C (100 MHz, CDCl₃) 9.9 (C (9)), 15.3, 17.5 (C(1), C(8)), 25.4 (C(4)), 27.0 (C(5)), 28.6 (C(7)), 29.9 (C(6)), 30.7 (C(3)), 54.2 (N(CH₂Ph)₂), 55.8 (C(2)), 126.6, 128.1, 128.7 (*o*,*m*,*p*-*Ph*), 141.3 (*i*-*Ph*); *m*/*z* (ESI⁺) 320 ([M+H]⁺, 100%); HRMS (CI⁺) $C_{23}H_{30}N^+$ ([M+H]⁺) requires 320.2378, found 320.2375.

4.10.1. X-ray crystal structure determination for **21**. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **21** [$C_{23}H_{29}N$]: *M*=319.49, monoclinic, space group P_{21}/c , *a*=12.1237(3) Å, *b*=10.8303(2) Å, *c*=14.6175 (3) Å, β =95.1731(11)°, *V*=1911.51(7) Å³, *Z*=4, μ =0.063 mm⁻¹, colourless plate, crystal dimensions= $0.1 \times 0.1 \times 0.2$ mm. A total of 4334 unique reflections were measured for $5 < \theta < 27$ and 3204 reflections were used in the refinement. The final parameters were *wR*₂=0.179 and *R*₁=0.079 [*I*>3.0 σ (*I*)]. Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783811. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

4.11. (RS)-1-[α-(Dibenzylamino)benzyl]benzotriazole 22

A solution of benzaldehyde (10.1 mL, 100 mmol), dibenzylamine (19.2 mL, 100 mmol) and benzotriazole (11.9 g, 100 mmol) in MeOH/Et₂O (1:1, 100 mL) was stirred at rt for 30 min, then the resultant homogeneous solution was stored at 0 °C for 16 h resulting in the precipitation of a white solid. The mixture was then filtered and the solid residue was triturated with cold Et₂O to give **22** (3:1 mixture of regioisomers) as a white solid (35.3 g, 87%).

Data for mixture: mp 144–146 °C (lit.⁶⁵ mp 153°C).

Data for major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.51 (2H, d, J 14.2, N (CH_APh)₂), 4.26 (2H, d, J 14.2, N(CH_BPh)₂), 6.85 (1H, s, PhCH), 7.25–7.45 (18H, m, Ar), 8.19 (1H, d, J 8.2, Ar).

4.12. (*RS*)-*N*-(1-Benzotriazol-1-yl-2-methylpropyl) dibenzylamine 23

A solution of isobutyraldehyde (9.13 mL, 100 mmol), dibenzylamine (19.2 mL, 100 mmol) and benzotriazole (11.9 g, 100 mmol) in MeOH/Et₂O (1:1, 100 mL) was stirred at rt for 30 min, then the resultant homogeneous solution was stored at 0 °C for 16 h resulting in the precipitation of a white solid. The mixture was then filtered and the solid residue was triturated with cold Et₂O to give **23** (2:1 mixture of regioisomers) as a white solid (29.8 g, 81%).

Data for mixture: mp 96–98 °C (lit.⁶⁶ mp 83–85°C).

Data for major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.48 (3H, d, J 6.5, CHMe_A), 1.39 (3H, d, J 6.5, CHMe_B), 3.01–3.14 (1H, m, CHMe₂), 3.21–3.30 (4H, m, N(CH₂Ph)₂), 5.09 (1H, d, J 10.6, CHCHMe₂), 7.06–7.09 (1H, m, Ar), 7.27–7.50 (11H, m, Ar), 7.97–8.00 (1H, m, Ar), 8.11–8.13 (1H, m, Ar).

4.13. (RS,Z)-N,N-Dibenzyl-1-phenylbut-2-ene-1-amine 24

Following General procedure 3, **22** (2.02 g, 5.00 mmol), (*Z*)-1bromoprop-1-ene (0.64 mL, 7.5 mmol) and Mg (182 mg, 7.5 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **24** as a white solid (1.23 g, 75%, 91:9 dr);⁶⁷ mp 53–55 °C; ν_{max} (film) 3027 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.51 (3H, d, *J* 5.8, C (4)*H*₃), 3.53 (2H, d, *J* 14.8, N(C*H*_APh)₂), 3.78 (2H, d, *J* 14.8, N (C*H*_BPh)₂), 4.67 (1H, d, *J* 9.8, C(1)*H*), 5.84 (1H, app t, *J* 10.2, C(2)*H*), 5.99 (1H, m, C(3)*H*), 7.25–7.46 (13H, m, *Ph*), 7.61 (2H, app d, *J* 7.6, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 13.5 (C(4)), 53.8 (N(CH₂Ph)₂), 58.4 (C (1)), 126.8 (C(3)), 128.2 (C(2)), 126.8, 126.9, 128.1, 128.2, 128.7, 128.9 (o,*m*,*p*-*P*h), 140.2, 140.4 (*i*-*P*h); *m*/*z* (ESI⁺) 328 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₄H₂₆N⁺ ([M+H]⁺) requires 328.2060, found 328.2059.

4.14. (*RS*)-*N*,*N*-Dibenzyl-3-methyl-1-phenylbut-2-en-1-amine 25

Following General procedure 3, **22** (2.02 g, 5.00 mmol) and 2methyl-1-propenylmagnesium bromide (0.5 M in THF, 15.0 mL, 7.5 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **25** as a pale yellow oil (1.59 g, 93%); ν_{max} (film) 3027 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.54 (3H, s, C(3)*Me*_A), 1.94 (3H, s, C(3)*Me*_B), 3.57 (2H, d, *J* 13.8, N(*CH*_APh)₂), 3.77 (2H, d, *J* 13.8, N(*CH*_BPh)₂), 4.58 (1H, d, *J* 9.8, C(1)*H*), 5.60 (1H, d, *J* 9.8, C(2)*H*), 7.25–7.28 (3H, m, *Ph*), 7.34–7.41 (6H, m, *Ph*), 7.47 (4H, d, *J* 7.6, *Ph*), 7.61 (2H, app d, *J* 7.3, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 18.5 (C(3)*Me*_A), 26.2 (C(3)*Me*_B), 53.9 (N (CH₂Ph)₂), 60.1 (*C*(1)), 121.5 (*C*(3)), 126.7, 126.7, 128.1, 128.2, 128.7, 128.7 (*o*,*m*,*p*-*Ph*), 136.7 (C(2)), 140.4, 143.1 (*i*-*Ph*); *m/z* (ESI⁺) 342 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₅H₂₈N⁺ ([M+H]⁺) requires 342.2216, found 342.2217.

4.15. (*RS*,*Z*)-*N*,*N*-Dibenzyl-2-methyl-1-phenylbut-2-en-1-amine 26

Following General procedure 3, **22** (1.01 g, 2.50 mmol), (*Z*)-2-bromobut-2-ene (0.38 mL, 3.75 mmol) and Mg (91 mg, 3.75 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **26** as a colourless oil (740 mg, 87%, 96:4 dr); ν_{max} (film) 3027, 2925 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃), 1.87 (3H, d, *J* 6.8, C(4)H₃), 1.97 (3H, s, C(2)*Me*), 3.86 (2H, d, *J* 14.6, N(*CH*_APh)₂), 4.03 (2H, d, *J* 14.6, N(*CH*_BPh)₂), 5.05 (1H, s, C(1)*H*), 5.61 (1H, q, *J* 6.8, C(3)*H*), 7.43–7.46 (3H, m, *Ph*), 7.51–7.60 (10H, m, *Ph*), 7.78 (2H, d, *J* 7.6, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.0 (*C*(4)), 19.6 (*C*(2)*Me*), 52.8 (N(*CH*₂Ph)₂), 63.9 (*C*(1)), 124.2 (*C*(3)), 126.9, 128.3, 128.3, 128.5, 129.5 (*o*,*m*,*p*-*Ph*), 136.6 (*C*(2)), 138.8, 142.1 (*i*-*Ph*); *m/z* (ESI⁺) 342 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₅H₂₈N⁺ ([M+H]⁺) requires 342.2216, found 342.2217.

4.16. (*RS*)-*N*,*N*-Dibenzyl-2,3-dimethyl-1-phenylbut-2-en-1-amine 27

Following General procedure 3, **22** (2.02 g, 5.00 mmol), 2bromo-3-methylbut-2-ene (0.87 mL, 7.5 mmol) and Mg (182 mg, 7.5 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol), **27** as a yellow oil (713 mg, 40%); v_{max} (film) 3027, 2923 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.87 (3H, s, C(3)*Me*_A), 1.89 (3H, s, C(2)*Me*), 2.03 (3H, s, C(3)*Me*_B), 3.89 (2H, d, *J* 14.4, N(*CH*_APh)₂), 4.00 (2H, d, *J* 14.4, N (*CH*_BPh)₂), 5.12 (1H, s, C(1)*H*), 7.45–7.49 (4H, m, *Ph*), 7.54–7.61 (9H, m, *Ph*), 7.81 (2H, app d, *J* 7.6, *Ph*); $\delta_{\rm C}$ (400 MHz, CDCl₃) 14.0 (*C*(2)*Me*), 21.1 (C(3)*Me*_A), 21.7 (C(3)*Me*_B), 53.2 (N(*CH*₂Ph)₂), 66.1 (*C*(1)), 126.7, 126.9, 128.3, 128.3, 128.4, 129.5 (*o*,*m*,*p*-*Ph*), 128.8 (*C*(3)), 129.0 (*C*(2)), 139.1, 143.0 (*i*-*Ph*); *m/z* (ESI⁺) 356 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₀N⁺ ([M+H]⁺) requires 356.2373, found 356.2377.

4.17. (RS)-N,N-Dibenzyl-2,5-dimethylhex-4-en-3-amine 28

Following General procedure 3, 23 (1.85 g, 5.00 mmol) and 2methyl-1-propenylmagnesium bromide (0.5 M in THF, 15.0 mL, 7.5 mmol) in PhMe (25 mL) were reacted to give, after purification by flash column chromatography (eluent 30-40 °C petrol), 28 as a white solid (1.35 g, 88%); mp 42–44 °C; ν_{max} (KBr) 3025, 2955, 2920 (C–H), 1495, 1455, 1100, 1070, 1030, 975, 740, 700; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.85 (3H, d, J 6.6, C(2)Me_A), 1.27 (3H, d, J 6.6, C(2) Me_B), 1.56 (3H, s, C(5)Me_A), 1.88-1.93 (1H, m, C(2)H), 1.96 (3H, s, C (5)Me_B), 2.93 (1H, app t, J 10.4, C(3)H), 3.42 (2H, d, J 14.2, N (CH_APh)₂), 3.95 (2H, d, J 14.2, N(CH_BPh)₂), 5.29 (1H, d, J 10.6, C(4)H), 7.30–7.33 (2H, m, Ph), 7.41 (4H, app t, J 7.5, Ph), 7.55 (4H, app d, J 7.5, *Ph*); δ_C (100 MHz, CDCl₃) 19.0 (C(5)*Me*_A), 20.7 (C(2)*Me*₂), 26.2 (C(5) $Me_{\rm B}$), 30.4 (C(2)), 53.9 (N(CH₂Ph)₂), 62.9 (C(3)), 122.4 (C(4)), 126.6, 128.2, 128.7 (o,m,p-Ph), 136.0 (C(5)), 141.1 (i-Ph); m/z (CI⁺) 264 $([M-C_{3}H_{7}]^{+}, 100\%), 308 ([M+H]^{+}, 10\%); HRMS (CI^{+}) C_{22}H_{30}N^{+}$ ([M+H]⁺) requires 308.2378, found 308.2364.

4.18. (RS,E)-N,N-Dibenzyl-1-phenylbut-2-ene-1-amine 29

^tBuLi (1.7 M in pentane, 8.82 mL, 15.0 mmol) was added to a stirred solution of (*E*)-1-bromoprop-1-ene (0.64 mL, 7.5 mmol) in Et₂O (30 mL) at -78 °C and the resultant mixture was stirred for 1 h at -78 °C. Solid MgBr₂·OEt₂ (1.55 g, 6.00 mmol) was then added and the reaction mixture was allowed to warm to 0 °C over 30 min, and was then added to a solution of **22** (2.02 g, 5.0 mmol) in PhMe (30 mL) at 0 °C via cannula. The resultant mixture was stirred at 0 °C for 2 h then satd aq NH₄Cl (20 mL) was added. The aqueous layer was extracted with Et₂O (3×20 mL) and the combined organic extracts were washed with 1.0 M aq NaOH (30 mL) and brine (30 mL), then dried and concentrated in vacuo. Purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1) gave **29** as a white solid (621 mg, 38%, >99:1 dr); mp 60–61 °C; ν_{max} (KBr) 3025 (C–H), 1495, 1450, 1030, 975, 745, 700, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.97 (3H, d, *J* 7.1, C(4)*H*₃), 3.65 (2H, d, *J* 13.7, N(C*H*_APh)₂), 3.81 (2H, d, *J* 13.7, N(C*H*_BPh)₂), 4.37 (1H, d, *J* 8.6, C(1)*H*), 5.70–5.79 (1H, m, C(3)*H*), 5.84–5.90 (1H, m, C(2)*H*), 7.34 (3H, app q, *J* 7.0, *Ph*), 7.42–7.47 (6H, m, *Ph*), 7.55 (4H, d, *J* 7.1, *Ph*), 7.66 (2H, d, *J* 7.8, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 18.2 (C(4)), 53.9 (N(CH₂Ph)₂), 64.7 (C(1)), 126.8, 126.9, 128.2, 128.2, 128.3, 128.8 (*o*,*m*,*p*-*Ph*), 129.0 (*C*(2)), 130.5 (*C*(3)), 140.4, 142.6 (*i*-*Ph*); *m*/*z* (ESI⁺) 328 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₄H₂₆N⁺ ([M+H]⁺) requires 328.2060, found 328.2056.

4.19. (RS)-N,N-Dibenzyl-1-phenyl-prop-2-en-1-amine 30

Following General procedure 3, **22** (2.02 g, 5.00 mmol) and vinylmagnesium chloride (1.6 M in THF, 4.69 mL, 7.5 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **30** as a yellow oil (1.45 g, 92%); ν_{max} (film) 3027 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.56 (2H, d, *J* 13.8, N(CH_APh)₂), 3.70 (2H, d, *J* 13.8, N(CH_BPh)₂), 4.30 (1H, d, *J* 8.6, C (1)*H*), 5.24 (1H, dd, *J* 17.2, 1.0, C(3)*H*_A), 5.48 (1H, dd, *J* 10.1, 1.0, C(3) *H*_B), 6.09–6.18 (1H, m, C(2)*H*), 7.23–7.29 (3H, m, *Ph*), 7.32–7.39 (6H, m, *Ph*), 7.44 (4H, d, *J* 7.3, *Ph*), 7.53 (2H, d, *J* 7.6, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 53.7 (N(CH₂Ph)₂), 65.2 (C(1)), 119.4 (C(3)), 126.8, 127.0, 128.1, 128.2, 128.3, 128.7 (*o*,*m*,*p*-*Ph*), 135.3 (C(2)), 140.0, 141.4 (*i*-*Ph*); *m*/z (ESI⁺) 314 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₃H₂₄N⁺ ([M+H]⁺) requires 314.1903, found 314.1899.

4.20. (*RS*)-*N*,*N*-Dibenzyl-2-methyl-1-phenylprop-2-en-1-amine 31

Following General procedure 3, **22** (809 mg, 2.00 mmol) and *iso*propenylmagnesium bromide (0.5 M in THF, 6.0 mL, 3.0 mmol) were reacted to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **31** as a yellow oil (655 mg, quant); ν_{max} (film) 3027 (C–H), 1493, 1453; δ_{H} (400 MHz, CDCl₃) 1.79 (3H, s, C(2)*Me*), 3.50 (2H, d, *J* 14.4, N(*CH*_APh)₂), 3.81 (2H, d, *J* 14.4, N (*CH*_BPh)₂), 4.30 (1H, s, C(1)*H*), 5.02 (1H, app br s, C(3)*H*_A), 5.16 (1H, app br s, C(3)*H*_B), 7.25–7.28 (2H, m, *Ph*), 7.33–7.41 (13H, m, *Ph*); δ_{C} (100 MHz, CDCl₃) 20.2 (*C*(2)*Me*), 53.4 (N(*CH*₂Ph)₂), 70.1 (*C*(1)), 114.3 (*C*(3)), 126.8, 127.0, 128.0, 128.2, 128.8, 129.4 (*o*,*m*,*p*-*Ph*), 138.9, 139.3 (*i*-*Ph*), 145.6 (*C*(2)); *m/z* (ESI⁺) 328 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₄H₂₆N⁺ ([M+H]⁺) requires 328.2060, found 328.2061.

4.21. (1*RS*,1'*SR*,2'*RS*)-*N*,*N*-Dibenzyl-1-(2'-methylcyclopropyl)-1-phenylmethanamine 32

Following General procedure 2, **24** (327 mg, 1.0 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (0.15 mL, 2.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol), **32** as a white solid (226 mg, 66%, >99:1 dr); mp 48–50 °C; ν_{max} (KBr) 3027, 2919, 2833, 2805 (C–H), 1493, 1453; δ_{H} (400 MHz, CDCl₃) 0.35 (1H, app q, *J* 5.0, C(3')*H*_A), 0.77 (3H, d, *J* 6.3, C(2')*Me*), 0.96–1.02 (1H, m, C(2')*H*), 1.09–1.17 (1H, m, C(3')*H*_B), 1.38–1.47 (1H, m, C(1')*H*), 3.46

 $\begin{array}{l} (1H, d, J \, 10.6, C(1)H), 3.66 \, (2H, d, J \, 13.6, N(CH_APh)_2), 3.93 \, (2H, d, J \, 13.6, N(CH_BPh)_2), \ 7.28-7.53 \ (13H, m, Ph), \ 7.63 \ (2H, d, J \, 7.3, Ph); \ \delta_C \\ (100 \, MHz, CDCl_3) \, 8.3 \, (C(3')), 13.0 \, (C(2')), 13.5 \, (C(3')Me), 14.2 \, (C(1')), \\ 54.0 \, (N(CH_2Ph)_2), \ 60.7 \, (C(1)), 126.7, 126.8, 127.9, 128.2, 128.8, 128.8 \\ (o,m,p-Ph), 140.8, 142.7 \, (i-Ph); \ m/z \, (ESI^+) \, 342 \, ([M+H]^+, 100\%); \ HRMS \\ (ESI^+) \, C_{20}H_{26}N^+ \, ([M+H]^+) \ requires \ 342.2216, \ found \ 342.2215. \end{array}$

4.22. (1*RS*,1'*SR*)-*N*,*N*-Dibenzyl-1-(2',2'-dimethylcyclopropyl)-1-phenylmethanamine 33

Following General procedure 2, 25 (171 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (70 µL, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 99:1), **33** as a white solid (156 mg, 88%, >99:1 dr); mp 60–62 °C; ν_{max} (film) 3027 (C–H), 1493, 1453; δ_{H} (400 MHz, CDCl₃) 0.47 (1H, app t, J 4.9, C(3')H_A), 0.68 (3H, s, C(2')Me_A), 0.85 (1H, dd, J 8.3, 4.3, C(3')H_B), 1.14–1.20 (1H, m, C(1')H), 1.18 (3H, s, C(2')Me_B), 3.42 (1H, d, J 10.6, C(1)H), 3.63 (2H, d, J 13.6, N(CH_APh)₂), 3.82 (2H, d, J 13.6, N(CH_BPh)₂), 7.22–7.30 (3H, m, Ph), 7.34 (4H, app t, J 7.4, Ph), 7.40 (2H, app t, J 7.6, Ph), 7.45 (4H, d, J 7.4, Ph), 7.52 (2H, app d, J 7.6, *Ph*); δ_C (100 MHz, CDCl₃) 13.6 (*C*(2')), 20.0 (*C*(2')*Me*_A), 20.4 (*C*(3')), 22.1 (C(2')Me_B), 27.4 (C(1')), 53.9 (N(CH₂Ph)₂), 61.6 (C(1)), 126.6, 126.7, 127.8, 128.2, 128.6, 128.7 (o,m,p-Ph), 140.7, 143.0 (i-Ph); m/z (ESI⁺) 356 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₀N⁺ ([M+H]⁺) requires 356.2372, found 356.2372.

4.22.1. X-ray crystal structure determination for **33**. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **33** [$C_{26}H_{29}N$]: M=353.51, orthorhombic, space group F 2 d d, a=9.02980(10) Å, b=19.3438(3) Å, c=49.1328(3) Å, V=8582.06(19) Å³, Z=16, $\mu=0.063$ mm⁻¹, colourless plate, crystal dimensions= $0.05 \times 0.05 \times 0.3$ mm. A total of 2589 unique reflections were measured for $5 < \theta < 27$ and 2029 reflections were used in the refinement. The final parameters were $wR_2=0.042$ and $R_1=0.034$ [$I>3.0\sigma(I)$]. Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783812. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

4.23. (1*RS*,1'*SR*,2'*RS*)-*N*,*N*-Dibenzyl-1-(1',2'-dimethylcyclopropyl)-1-phenylamine 34

Following General procedure 2, **26** (171 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (70 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **34** as a colourless oil (127 mg, 71%, >99:1 dr); ν_{max} (film) 3061, 3027, 2960 (C–H), 1493, 1452; δ_{H} (400 MHz, CDCl₃) 0.30–0.33

(1H, m, C(3')*H*_A), 0.60–0.65 (1H, m, C(2')*H*), 0.77–0.80 (1H, m, C(3') *H*_B), 0.98–1.01 (3H, m, C(2')*Me*), 1.33 (3H, s, C(1')*Me*), 3.61 (1H, s, C(1) *H*), 3.88 (2H, d, *J* 14.2, N(CH_APh)₂), 4.08 (2H, d, *J* 14.2, N(CH_BPh)₂), 7.30–7.52 (13H, m, *Ph*), 7.77 (2H, d, *J* 6.3, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.1 (C(2')*Me*), 19.4 (*C*(2')), 20.8 (*C*(1')), 22.8 (*C*(3')), 23.3 (*C*(1')*Me*), 53.8 (N (CH₂Ph)₂), 65.0 (*C*(1)), 126.6, 126.7, 128.0, 128.2, 129.0, 129.5 (*o*,*m*,*p*-*Ph*), 139.9, 142.6 (*i*-*Ph*); *m/z* (ESI⁺) 356 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₆H₃₀N⁺ ([M+H]⁺) requires 356.2373, found 356.2375.

4.24. (*RS,RS*)-*N,N*-Dibenzyl-1-phenyl-1-(1',2',2'trimethylcyclopropyl)methanamine 35

Following General procedure 2, **27** (178 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (70 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 19:1), **35** as a yellow oil (68 mg, 37%, >99:1 dr); ν_{max} (film) 3027 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.39 (1H, d, *J* 4.4, C(3') *H*_A), 0.44 (1H, d, *J* 4.4, C(3')*H*_B), 0.93 (3H, s, C(2')*Me*_A), 1.08 (3H, s, C (2')*Me*_B), 1.36 (3H, s, C(1')*Me*), 3.68 (1H, s, C(1)*H*), 3.82 (2H, d, *J* 14.4, N(C*H*_APh)₂), 4.00 (2H, d, *J* 14.4, N(C*H*_BPh)₂), 7.23–7.46 (13H, m, *Ph*), 7.63 (2H, app d, *J* 7.6, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 17.5 (C(1')*Me*), 19.1 (C (2')), 22.7 (C(2')*Me*_A), 23.3 (C(2')*Me*_B), 25.0 (C(1')), 29.2 (C(3')), 53.9 (N(CH₂Ph)₂), 66.4 (C(1)), 126.5, 126.6, 127.9, 128.1, 128.8, 129.2 (*o*,*m*,*p*-*Ph*), 140.0, 142.8 (*i*-*Ph*); *m*/*z* (ESI⁺) 370 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₇H₃₂N⁺ ([M+H]⁺) requires 370.2529, found 370.2528.

4.25. (*RS,RS*)-*N*,*N*-Dibenzyl-1-(2',2'-dimethylcyclopropyl)-2methylpropan-1-amine 36

Following General procedure 2, 28 (307 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH_2I_2 (0.32 mL, 4.0 mmol) and TFA (0.15 mL,2.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol), **36** as a white crystalline solid (252 mg, 79%, >99:1 dr); mp 63–65 °C; $v_{\rm max}$ (KBr) 3060, 3025, 2950 (C–H), 1495, 1455, 745, 700; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.63–0.67 (2H, m, C(3')H_A, C(1')H), 0.70–0.74 (1H, m, C(3')H_B), 0.92 (3H, s, C(2')Me_A), 0.95 (3H, d, J 6.7, C(2)Me_A), 1.08 (3H, d, I 6.7, C(2)Me_B), 1.15 (3H, s, C(2')Me_B), 1.86–1.94 (1H, m, C(2)H), 2.07-2.12 (1H, m, C(1)H), 3.81 (2H, d, / 13.5, N(CH_APh)₂), 3.97 (2H, d, / 13.5, N(CH_BPh)₂), 7.28–7.32 (2H, m, Ph), 7.38 (4H, app t, J 7.4, Ph), 7.47 $(4H, app d, J7.4, Ph); \delta_{C}(100 \text{ MHz}, CDCl_{3}) 14.3 (C(2')), 18.3 (C(3')), 20.1,$ 21.5 (C(2)Me₂), 21.6 (C(2')Me_A), 26.4 (C(1')), 27.2 (C(2')Me_B), 32.0 (C (2)), 55.1 (N(CH₂Ph)₂), 61.9 (C(1)), 126.7, 128.1, 129.2 (o,m,p-Ph), 141.1 $(i-Ph); m/z (CI^+) 278 ([M-C_3H_7]^+, 100\%), 322 ([M+H]^+, 10\%); HRMS$ $(CI^+) C_{23}H_{32}N^+ ([M+H]^+)$ requires 322.2535, found 322.2525.

4.25.1. X-ray Crystal Structure Determination for **36**. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **36** [C₂₃H₃₁N]: *M*=321.51, triclinic, space group *P*–1, *a*=9.3589(2) Å, *b*=10.0571(2) Å, *c*=10.6726(3) Å,

 α =102.2247(9)°, β =95.2451(9)°, γ =92.1221(9)°, V=976.01(4) Å³, Z=2, μ =0.062 mm⁻¹, colourless plate, crystal dimensions=0.2×0.2×0.2 mm. A total of 4430 unique reflections were measured for 5< θ <27 and 3112 reflections were used in the refinement. The final parameters were wR_2 =0.043 and R_1 =0.040 [I>3.0 σ (I)]. Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783813. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or email: deposit@ccdc.cam.ac.uk].

4.26. (1*RS*,1′*SR*,2′*SR*)-*N*,*N*-Dibenzyl-1-[2′-methylcyclopropyl]-1-phenylmethanamine 37

Following General procedure 2, **29** (164 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH_2I_2 (0.16 mL, 2.0 mmol) and TFA (70 µL, 1.0 mmol) in CH_2CI_2 (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **37** as a pale yellow oil (102 mg, 60%, 89:11 dr).

Data for mixture: ν_{max} (film) 3060, 3025, 2950 (C–H), 1495, 1450, 1120, 1070, 1030, 745, 700; m/z (ESI⁺) 342 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₅H₂₈N⁺ ([M+H]⁺) requires 342.2216, found 342.2213.

Data for major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.33–0.40 (1H, m, C (2')H), 0.61–0.65 (1H, m, C(3')H_A), 0.70–0.74 (1H, m, C(3')H_B), 1.03–1.10 (1H, m, C(1')H), 1.15 (3H, d, J 6.1, C(2')Me), 3.11 (1H, d, J 9.8, C(1)H), 3.68 (2H, d, J 13.6, N(CH_APh)₂), 3.88 (2H, d, J 13.6, N (CH_BPh)₂), 7.26–7.51 (13H, m, Ph), 7.58 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 10.4 (C(2')), 14.9 (C(3')), 18.6 (C(1')), 18.7 (C(2') Me), 54.0 (N(CH₂Ph)₂), 66.2 (C(1)), 126.7, 126.7, 127.9, 128.2, 128.7, 128.7 (*o*,*m*,*p*-Ph), 140.6, 142.7 (*i*-Ph).

Data for minor isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) [selected peaks] 1.30 (3H, d, J 6.1, C(2')Me).

4.27. (*RS*)-*N*,*N*-Dibenzyl-1-cyclopropyl-1-phenylmethanamine 38

Following General procedure 2, 30 (157 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (70 µL, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 19:1), **38** as a pale yellow oil (119 mg, 73%); ν_{max} (film) 3026 (C–H), 1493, 1453; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.01–0.03 $(1H, m, C(2')H_A), 0.52-0.62 (2H, m, C(2')H_B, C(3')H_A), 0.81-0.88$ (1H, m, C(3')H_B), 1.30–1.39 (1H, m, C(1')H), 3.01 (1H, d, J 9.8, C(1) H), 3.67 (2H, d, J 13.8, N(CH_APh)₂), 3.93 (2H, d, J 13.8, N(CH_BPh)₂), 7.27-7.34 (3H, m, Ph), 7.38 (4H, app t, J 7.6, Ph), 7.45 (2H, app t, J 7.6, Ph), 7.50 (4H, app d, J 7.1, Ph), 7.60 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 3.0 (C(2')), 6.7 (C(3')), 10.8 (C(1')), 54.1 (N (CH2Ph)2), 67.2 (C(1)), 126.8, 128.0, 128.2, 128.2, 128.7, 128.8 (*o*,*m*,*p*-*Ph*), 140.6, 142.4 (*i*-*Ph*); *m*/*z* (ESI⁺) 328 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₄H₂₆N⁺ ([M+H]⁺) requires 328.2060, found 328.2064.

4.28. (*RS,RS*)-*N,N*-Dibenzyl-1-(2',2'-dideuteriocyclopropyl)-1-phenylmethanamine 39

Following General procedure 2, **30** (157 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CD_2I_2 (0.16 mL, 2.0 mmol) and TFA (70 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 3 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 19:1), **39** as a pale yellow oil (118 mg, 72%, 70:30 dr).

Data for mixture: ν_{max} (film) 3060, 3025, 2805 (C–H), 1600, 1495, 1455, 1120, 1070, 1030, 970, 910, 745, 700; m/z (ESI⁺) 330 ([M+H]⁺, 100%); HRMS (ESI⁺) C₂₄H₂₄D₂N⁺ ([M+H]⁺) requires 330.2185, found 330.2175.

Data for major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) -0.02 (1H, app t, J 4.9, C(3')H_A), 0.57 (1H, dd, J 8.3, 4.6, C(3')H_B), 1.30–1.39 (1H, ddd, J 9.7, 8.3, 5.0, C(1')H), 3.01 (1H, d, J 9.8, C(1)H), 3.67 (2H, d, J 13.8, N (CH_APh)₂), 3.93 (2H, d, J 13.8, N(CH_BPh)₂), 7.27–7.34 (3H, m, Ph), 7.38 (4H, app t, J 7.6, Ph), 7.45 (2H, app t, J 7.6, Ph), 7.50 (4H, d, J 7.1, Ph), 7.60 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 3.0 (C(3')), 10.8 (C (1')), 54.1 (N(CH₂Ph)₂), 67.2 (C(1)), 126.8, 128.0, 128.2, 128.2, 128.7, 128.8 (*o*,*m*,*p*-Ph), 140.6, 142.4 (*i*-Ph).⁶⁸

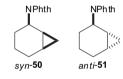
Data for minor isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.52–0.62 (1H, app t, J 4.6, C(3')H_A), 0.82 (1H, dd, J 7.7, 4.6, C(3')H_B), 1.30–1.39 (1H, m, C (1')H), 3.01 (1H, d, J 9.8, C(1)H), 3.67 (2H, d, J 13.8, N(CH_APh)₂), 3.93 (2H, d, J 13.8, N(CH_BPh)₂), 7.27–7.34 (3H, m, Ph), 7.38 (4H, app t, J 7.6, Ph), 7.45 (2H, app t, J 7.6, Ph), 7.50 (4H, d, J 7.1, Ph), 7.60 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 6.7 (C(3')), 10.8 (C(1')), 54.1 (N (CH₂Ph)₂), 67.2 (C(1)), 126.8, 128.0, 128.2, 128.2, 128.7, 128.8 (o,m, P-Ph), 140.6, 142.4 (*i*-Ph).⁶⁸

4.29. (*RS*)-*N*,*N*-Dibenzyl-1-(1'-methylcyclopropyl)-1-phenylmethanamine 40

Following General procedure 2, **31** (164 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (70 μ L, 1.0 mmol) in CH₂Cl₂ (1.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 99:1), **40** as a yellow oil (160 mg, 94%); ν_{max} (film) 3026, 2951 (C–H), 1493, 1452; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.17–0.19 (1H, m, C(2')H_A), 0.46–0.52 (3H, m, C(2')H_B, C(3')H₂), 1.16 (3H, s, C(1') *Me*), 3.08 (1H, s, C(1)H), 3.72 (2H, d, J 14.5, N(CH_APh)₂), 3.98 (2H, d, J 14.5, N(CH_BPh)₂), 7.26–7.30 (2H, m, *Ph*), 7.33–7.38 (8H, m, *Ph*), 7.40–7.45 (3H, m, *Ph*), 7.52 (2H, app d, J 7.3, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.1 (*C*(2')), 16.5 (*C*(3')), 18.2 (*C*(1')), 19.8 (*C*(1')*Me*), 52.7 (N (CH₂Ph)₂), 71.0 (*C*(1)), 126.7, 126.8, 127.9, 128.1, 129.2, 129.2 (*o*,*m*,*p*-*Ph*), 138.9, 141.5 (*i*-*Ph*); *m*/*z* (ESI⁺) 342 ([M+H⁺], 100%); HRMS (ESI⁺) C₂₅H₂₈N⁺ ([M+H]⁺) requires 342.2216, found 342.2209.

4.30. (*RS,RS*)-*N,N*-Dibenzyl-1-(1'-methyl-2',2'dideuteriocyclopropyl)-1-phenylmethanamine 41

Following General procedure 2, 31 (164 mg, 0.50 mmol), ZnEt_2 (1.0 mL, 1.0 mmol), CD_2I_2 (0.16 mL, 2.0 mmol) and TFA


 $(70 \ \mu\text{L}, 1.0 \ \text{mmol})$ in CH₂Cl₂ (1.0 mL) were reacted for 3 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 19:1), **41** as a pale yellow solid (108 mg, 63%, 58:42 dr).

Data for mixture: mp 57–59 °C; ν_{max} (KBr) 3060, 3025, 2960, 2810 (C–H), 1600, 1495, 1450, 1120, 1070, 1030, 910, 775, 750, 700; m/z (ESI⁺) 344 ([M+H]⁺, 100%); HRMS (ESI⁺) $C_{25}H_{26}D_2N^+$ ([M+H]⁺) requires 344.2342, found 344.2335.

Data for major isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.46–0.52 (2H, m, C(3')H₂), 1.16 (3H, s, C(1')Me), 3.08 (1H, s, C(1)H), 3.72 (2H, d, J 14.5, N(CH_APh)₂), 3.98 (2H, d, J 14.5, N(CH_BPh)₂), 7.26–7.30 (2H, m, Ph), 7.33–7.38 (8H, m, Ph), 7.40–7.45 (3H, m, Ph), 7.52 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.5 (C (3')), 18.2 (C(1')), 19.8 (C(1')Me), 52.7 (N(CH₂Ph)₂), 71.0 (C(1)), 126.7, 126.8, 127.9, 128.1, 129.2, 129.2 (o,m,p-Ph), 138.9, 141.5 (*i*-Ph).⁶⁸

Data for minor isomer: $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.17–0.19 (1H, m, C(3') $H_{\rm A}$), 0.46–0.52 (1H, m, C(3') $H_{\rm B}$), 1.16 (3H, s, C(1')Me), 3.08 (1H, s, C(1)H), 3.72 (2H, d, J 14.5, N(C $H_{\rm A}$ Ph)₂), 3.98 (2H, d, J 14.5, N (C $H_{\rm B}$ Ph)₂), 7.26–7.30 (2H, m, Ph), 7.33–7.38 (8H, m, Ph), 7.40–7.45 (3H, m, Ph), 7.52 (2H, app d, J 7.3, Ph); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.1 (C (3')), 18.2 (C(1')), 19.8 (C(1')Me), 52.7 (N(C $H_{\rm 2}$ Ph)₂), 7.10 (C(1)), 126.7, 126.8, 127.9, 128.1, 129.2, 129.2 (o,m,p-Ph), 138.9, 141.5 (i-Ph).⁶⁸

4.31. (1*RS*,2*SR*,3*SR*)- and (1*RS*,2*RS*,3*SR*)-2-Phthalimidobicyclo [4.1.0]heptane *syn*-50 and *anti*-51

Following General procedure 2, $47^{23.69}$ (455 mg, 2.00 mmol), ZnEt₂ (4.0 mL, 4.0 mmol), CH₂I₂ (0.64 mL, 8.0 mmol) and TFA (0.30 mL, 4.0 mmol) in CH₂Cl₂ (4.0 mL) were reacted for 3 h to give a 17:83 mixture of *syn*-**50** and *anti*-**51**, respectively, in addition to 38% returned starting material. Purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 9:1) gave *syn*-**50** (38 mg, 8%, >99:1 dr) and *anti*-**51** (311 mg, 33%, >99:1 dr) as white solids.

Data for syn-**50**: mp 140–142 °C; ν_{max} (KBr) 2947 (C–H), 1707 (imide); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.65–0.71 (1H, m, C(7) $H_{\rm A}$), 0.89 (1H, app q, *J* 5.2, C(7) $H_{\rm B}$), 1.03–1.12 (2H, m, C(1)H, C(6)H), 1.23–1.36 (1H, m, C(4) $H_{\rm A}$), 1.45–1.55 (2H, m, C(5) $H_{\rm A}$, C(3) $H_{\rm A}$), 1.63–1.72 (1H, m, C (4) $H_{\rm B}$), 1.97–2.02 (1H, m, C(5) $H_{\rm B}$), 2.09–2.19 (1H, m, C(3) $H_{\rm B}$), 4.72–4.77 (1H, m, C(2)H), 7.68–7.70 (2H, m, *Ar*), 7.81–7.83 (2H, m, *Ar*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 11.1 (C(6)), 11.2 (C(7)), 14.8 (C(1)), 23.0 (C (5)), 23.3 (C(3)), 23.9 (C(4)), 49.6 (C(2)), 123.0 (C(3'), C(4')), 132.2 (C (2'), C(5')), 133.7 (C(1'), C(6')), 168.9 (C=O); *m*/*z* (FI⁺) 241 ([M]⁺, 100%); HRMS (FI⁺) C₁₅H₁₅NO₂⁺ ([M]⁺) requires 241.1103, found 241.1111.

Data for anti-**51**: mp 130–132 °C; ν_{max} (KBr) 2940 (C–H), 1709 (imide); $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.18 (1H, app q, *J* 5.3, C(7) *H*_A), 0.62–0.68 (1H, m, C(7)*H*_B), 1.01–1.13 (2H, m, C(1)*H*, C(4) *H*_A), 1.18–1.25 (1H, m, C(6)*H*), 1.51–1.58 (2H, m, C(4)*H*_B, C(3)*H*_A), 1.75–1.91 (3H, m, C(3)*H*_B, C(5)*H*₂), 4.28 (1H, app dd, *J* 11.5, 5.7, C(2)*H*), 7.69–7.71 (2H, m, *Ar*), 7.82–7.84 (2H, m, *Ar*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 9.3 (C(7)), 11.3 (C(6)), 14.5 (C(1)), 18.1 (C(4)), 22.3 (C(5)), 27.0 (C(3)), 47.9 (C(2)), 123.1 (C(3'), C(4')), 132.1 (C (2'), C(5')), 133.8 (C(1'), C(6')), 168.2 (C=O); *m/z* (FI⁺) 241 ([M]⁺, 100%); HRMS (FI⁺) C₁₅H₁₅NO₂⁺ ([M]⁺) requires 241.1103, found 241.1110.

4.32. (1RS,2RS,3SR)-2-Phthalimidobicyclo[4.1.0]heptane 51

PPh₃ (1.44 g, 5.50 mmol), **52**⁷⁰ (561 mg, 5.00 mmol) and DEAD (0.87 mL, 5.50 mmol) were added to a stirred solution of phthalimide (809 mg, 5.50 mmol) in THF (100 mL) at rt. The resulting mixture was stirred at rt for 24 h then concentrated in vacuo. Purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 19:1) gave **51** as a white solid (600 mg, 50%, >99:1 dr); mp 130–132 °C.

4.33. *tert*-Butyl (1*RS*,2*SR*,6*SR*)-bicyclo[4.1.0]heptan-2-ylcarbamate 53

Following General procedure 1, **49**^{23,71} (197 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol) and CH₂I₂ (0.32 mL, 4.0 mmol) in CH₂CI₂ (2.0 mL) were reacted for 3 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 9:1), **53** as a white solid (141 mg, 67%, >99:1 dr); mp 41–43 °C; ν_{max} (film) 3343 (N–H), 2933 (C–H), 1701 (C=O); $\delta_{\rm H}$ (500 MHz, CDCI₃) 0.04–0.06 (1H, m, C(7)*H*_A), 0.48–0.52 (1H, m, C(7)*H*_B), 0.77 (1H, app q, *J* 11.6, C(3)*H*_A), 1.02–1.07 (1H, m, C(6)*H*), 1.11–1.20 (2H, m, C(1)*H*, C(4)*H*_A), 1.28–1.36 (2H, m, C(5)*H*_A, C(4)*H*_B), 1.42 (9H, br s, C*M*₂), 1.69 (1H, br s, C(3)*H*_B), 1.84–1.87 (1H, m, C(5)*H*_B), 3.98 (1H, br s, C(2) *H*), 4.53 (1H, br s, NH); $\delta_{\rm C}$ (125 MHz, CDCI₃) 7.8 (C(7)), 11.6 (C(6)), 15.5 (C(1)), 21.5 (C(4)), 23.0 (C(5)), 27.5 (C(3)), 28.4 (CMe₃), 46.5 (C (2)), 78.8 (CMe₃), 155.3 (C=O); *m*/z (ESI⁺) 270 ([M+MeCN+NH₄]⁺, 100%); HRMS (ESI⁺) C₁₂H₂₁NNaO₂⁺ ([M+Na]⁺) requires 234.1465, found 234.1465.

4.34. *tert*-Butyl (1*RS*,2*RS*,6*SR*)-bicyclo[4.1.0]heptan-2-ylcarbamate 54

Following General procedure 2, **49**⁷¹ (197 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (150 µL, 2.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 3 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 9:1), **54** as a white solid (148 mg, 70%, >99:1 dr); mp 40–42 °C; ν_{max} (film) 3333 (N–H), 2933 (C–H), 1703 (C=O); δ_{H} (500 MHz, CDCl₃) -0.03-0.02 (1H, m, C(7)H_A), 0.52-0.57 (1H, m, C (7)H_B), 0.70-0.74 (1H, m, C(1)H), 0.83-0.88 (1H, m, C(6)H), 0.99-1.03 (1H, m, C(4)H_A), 1.06-1.12 (1H, m, C(3)H_A), 1.24-1.32 (1H, m, C(4)H_B), 1.37 (9H, br s, CMe₃), 1.39–1.44 (1H, m, C(3)H_B), 1.51–1.56 (1H, m, C(5)H_A), 1.68–1.75 (1H, m, C(5)H_B), 3.71 (1H, br s, C(2)H), 4.76 (1H, br s, NH); δ_C (125 MHz, CDCl₃) 9.2 (C(7)), 9.7 (C(6)), 16.3 (C(1)), 16.9 (C(4)), 24.8 (C(5)), 28.0 (C(3)), 28.4 (CMe₃), 46.4 (C (2)), 78.9 (CMe₃), 155.2 (C=O); m/z (ESI⁺) 270 ([M+MeCN+NH₄]⁺, 100%); HRMS (ESI⁺) C₁₂H₂₁NNaO₂⁺ ([M+Na]⁺) requires 234.1465, found 234.1465.

NHMoc

Following General procedure 4, **46** (980 mg, 10.0 mmol), Bi (OTf)₃ (328 mg, 0.50 mmol), KPF₆ (92 mg, 0.50 mmol), methyl carbamate (1.13 g, 15.0 mmol) and MgSO₄ (~1.5 g) in THF (50 mL) were reacted for 16 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/EtOAc, 1:0 to 9:1 gradient elution), **59** as a white solid (1.21 g, 78%);⁷² mp 25–26 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.47–1.55 (1H, m, CH₂), 1.56–1.66 (2H, m, CH₂), 1.84–1.92 (1H, m, CH₂), 1.94–2.00 (2H, m, CH₂), 3.64 (3H, s, OMe), 4.18 (1H, br s, C(1)H), 4.75 (1H, br s, NH), 5.58 (1H, dd, J 9.9, 2.0, C(2) H), 5.78–5.83 (1H, m, C(3)H).

4.36. Phenyl (RS)-cyclohex-2-en-1-ylcarbamate 60

Following General procedure 4, 46 (980 mg, 10.0 mmol), Bi (OTf)₃ (328 mg, 0.5 mmol), KPF₆ (92 mg, 0.5 mmol), phenyl carbamate (2.06 g, 15.0 mmol) and MgSO₄ (\sim 1.5 g) in THF (50 mL) were reacted for 16 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 1:0 to 9:1 gradient elution), **60** as a white solid (1.23 g, 57%); mp 108–110 °C; ν_{max} (KBr) 3330 (N-H), 3020, 2930, 2870 (С-Н), 1735 (С=О), 1530, 1495. 1340, 1210, 975, 725, 665; δ_H (400 MHz, CDCl₃) 1.61–1.70 (3H, m, C $(5)H_2$, C(6)H_A), 1.95–2.04 (3H, m, C(4)H₂, C(6)H_B), 4.29–4.50 (1H, m, C(1)H), 5.03 (1H, d, J 6.8, NH), 5.69-5.71 (1H, m, C(2)H), 5.88-5.93 (1H, m, C(3)H), 7.15 (2H, app d, J 7.7, Ph), 7.20 (1H, app t, J 7.5, Ph), 7.36 (2H, app t, J 7.7, Ph); δ_{C} (100 MHz, CDCl₃) 19.6 (C(5)), 24.8 (C(6)), 29.6 (C(4)), 46.6 (C(1)), 127.4 (C(2)), 121.6, 125.2, 129.3 (o,m,p-Ph), 131.1 (C(3)), 151.0 (*i-Ph*), 153.8 (C=0); m/z (ESI⁺) 276 $([M+MeCN+NH_4]^+, 100\%); HRMS(ESI^+)C_{13}H_{15}NNaO_2^+([M+Na]^+)$ requires 240.0995, found 240.0997.

4.37. Benzyl (RS)-cyclohex-2-en-1-ylcarbamate 61

Following General procedure 4, **46** (980 mg, 10.0 mmol), Bi (OTf)₃ (328 mg, 0.5 mmol), KPF₆ (92 mg, 0.5 mmol), benzyl carbamate (2.27 g, 15.0 mmol) and MgSO₄ (~ 1.5 g) in THF (50 mL) were reacted for 16 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/EtOAc, 1:0 to 9:1 gradient elution), **61** as a white solid (1.92 g, 83%);⁷³ mp 65–67 °C; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.01–1.93 (3H, m, CH₂), 1.45–1.64 (3H, m, CH₂), 4.22 (1H, br s, C(1)*H*), 5.02–5.09 (2H, m, OCH₂Ph), 5.39 (1H, br s, NH), 5.58 (1H, d, J 9.9, C(2)*H*), 5.74–5.79 (1H, m, C(3)*H*), 7.23–7.29 (5H, m, *Ph*).

4.38. (RS)-N-(Cyclohex-2-en-1-yl)benzamide 62

Following General procedure 4, **46** (980 mg, 10.0 mmol), Bi (OTf)₃ (328 mg, 0.50 mmol), KPF₆ (92 mg, 0.50 mmol), benzamide (1.82 g, 15.0 mmol) and MgSO₄ (~1.5 g) in THF (50 mL) were reacted for 16 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 1:0 to 9:1 gradient elution), **62** as a white solid (570 mg, 28%);⁷⁴ mp 96–98 °C (lit.⁷⁴ mp 102–104 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.57–1.72 (3H, m, *CH*₂), 1.93–2.02 (3H, m, *CH*₂), 4.64–4.70 (1H, m, C(1)*H*), 5.62–5.68 (1H, m, C(2)*H*), 5.85–5.90 (1H, m, C(3)*H*), 6.34 (1H, d, *J* 7.5, *NH*), 7.36–7.40 (2H, m, *Ph*), 7.44–7.48 (2H, m, *Ph*), 7.75–7.78 (1H, m, *Ph*).

4.39. Methyl (1RS,2SR,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 63

Following General procedure 1, **59** (155 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol) and CH₂I₂ (0.32 mL, 4.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 4:1), **63** as a colourless oil (167 mg, 99%, >99:1 dr); ν_{max} (film) 3320 (N–H), 3015, 2930, 2855 (C–H), 1700 (C=O), 1540, 1460, 1250, 1045, 780, 645; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.05 (1H, app q, *J* 5.2, C(7)H_A), 0.49 (1H, td, *J* 8.8, 4.7, C(7)H_B), 0.76 (1H, m, C(3)H_A), 1.00–1.18 (3H, m, C(1)H, C (4)H_A, C(6)H), 1.24–1.38 (2H, m, C(4)H_B, C(5)H_A), 1.64–1.72 (1H, m, C (3)H_B), 1.82–1.89 (1H, m, C(5)H_B), 3.60 (3H, s, OMe), 3.97–4.04 (1H, m, C(2)H), 4.78 (1H, br s, NH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 7.8 (C(7)), 11.6 (C (1)), 15.4 (C(6)), 21.5 (C(4)), 22.9 (C(5)), 27.3 (C(3)), 47.0 (C(2)), 51.7 (OMe), 156.4 (C=O); m/z (ESI⁺) 192 ([M+Na]⁺, 80%), 361 ([2M+Na]⁺, 100%); HRMS (ESI⁺) C₉H₁₅NNaO₂⁺ ([M+Na]⁺) requires 192.0995, found 192.0998.

4.40. Phenyl (1RS,2SR,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 64

Following General procedure 1, **60** (217 mg, 1.0 mmol), ZnEt₂ (2.0 mL, 2.0 mmol) and CH₂I₂ (0.32 mL, 4.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/EtOAc, 1:0 to 9:1), **64** as a white solid (229 mg, 99%, >99:1 dr); mp 101–103 °C; ν_{max} (KBr) 3310 (N–H), 2930 (C–H), 1705 (C=O), 1535, 1495, 1215, 1020, 990, 795, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.17 (1H, app t, *J* 5.1, C(7) *H*_A), 0.61 (1H, app t, *J* 8.7, 4.7, C(7)*H*_B), 0.86–0.95 (1H, m, C(3)*H*_A), 1.11–1.29 (3H, m, C(1)*H*, C(4)*H*_A, C(6)*H*), 1.33–1.45 (2H, m, C(4)*H*_B, C (5)*H*_A), 1.81–1.89 (1H, m, C(3)*H*_B), 1.89–1.99 (1H, m, C(5)*H*_B), 4.11–4.19 (1H, m, C(2)*H*), 5.07–5.08 (1H, m, NH), 7.11–7.21 (3H, m, *Ph*), 7.36 (2H, app t, *J* 7.8, *Ph*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 7.9 (*C*(7)), 11.8 (C (6)), 15.3 (*C*(1)), 21.4 (*C*(4)), 22.9 (*C*(5)), 27.3 (*C*(3)), 47.5 (*C*(2)), 121.6,

125.1, 129.2 (o,*m*,*p*-*Ph*), 151.1 (*i*-*Ph*), 153.9 (*C*=O); *m*/*z* (ESI⁺) 232 ([M+H]⁺, 40%), 485 ([2M+Na]⁺, 100%); HRMS (ESI⁺) $C_{14}H_{17}NNaO_2^+$ ([M+Na]⁺) requires 254.1151, found 254.1154.

4.41. Benzyl (1RS,2SR,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 65

Following General procedure 1, 61 (231 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol) and CH₂I₂ (0.32 mL, 4.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 4:1), 65 as a white solid (206 mg, 84%, >99:1 dr); mp 48–50 °C; $\nu_{\rm max}$ (KBr) 3330 (N–H), 2935, 2360 (C–H), 1695 (C=O), 1530, 1240, 1045, 695, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.09 (1H, q, / 5.1, C(7)H_A), 0.51–0.57 (1H, m, C(7) H_B), 0.78–0.87 (1H, m, C(3)H_A), 1.06–1.14 (1H, m, C(6)H), 1.14–1.25 (2H, m, C(1)H, C(4)H_A), 1.28–1.42 (2H, m, C(5)H_A, C(4)H_B), 1.70–1.79 (1H, m, C(3)*H*_B), 1.86–1.96 (1H, m, C(5)*H*_B), 4.06–4.15 (1H, m, C(2)*H*), 4.88 (1H, d, J 6.3, NH), 5.11 (2H, s, CH₂Ph), 7.30–7.37 (5H, m, Ph); δ_C (100 MHz, CDCl₃) 7.9 (C(7)), 11.7 (C(6)), 15.4 (C(1)), 21.5 (C(4)), 22.9 (C (5)), 27.4 (C(3)), 47.2 (C(2)), 66.4 (OCH₂Ph), 128.0, 128.2, 128.5 (o,m,p-*Ph*), 136.7 (*i*-*Ph*), 155.7 (*C*=O); *m*/*z* (ESI⁺) 268 ([M+Na]⁺, 40%), 304 ([M+NH₄+MeCN]⁺, 100%), 513 ([2M+Na]⁺, 30%); HRMS (ESI⁺) $C_{15}H_{19}NNaO_2^+$ ([M+Na]⁺) requires 268.1308, found 268.1309.

4.42. (1RS,2SR,6SR)-N-(Bicyclo[4.1.0]hept-2-yl)benzamide 66

Following General procedure 1, 62 (201 mg, 1.0 mmol), ZnEt₂ (2.0 mL, 2.0 mmol) and CH₂I₂ (0.32 mL, 4.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/EtOAc, 7:3 to 1:1 gradient elution), **66** as a white solid (215 mg, quant, >99:1 dr); mp 122–124 °C; ν_{max} (KBr) 3295 (N–H), 1625 (C=O), 1535, 665; δ_{H} (400 MHz, CDCl₃) 0.21 (1H, app q, J 5.2, C(7)H_A), 0.62 (1H, td, J 8.7, 4.6, C(7)H_B), 0.87–0.96 (1H, m, C(3)H_A), 1.13–1.22 (1H, m, C(6)H), 1.24–1.35 (2H, m, C(1)H, C $(5)H_A$), 1.40–1.48 (2H, m, C(4)H₂), 1.85–1.92 (1H, m, C(5)H_B), 1.95-2.01 (1H, m, C(3)H_B), 4.51-4.58 (1H, m, C(2)H), 6.07 (1H, br s, NH), 7.42–7.52 (3H, m, Ph), 7.77–7.80 (2H, m, Ph); δ_C (100 MHz, CDCl₃) 8.0 (C(7)), 11.6 (C(6)), 15.4 (C(1)), 21.6 (C(4)), 23.0 (C(5)), 27.0 (C(3)), 46.0(*C*(2)), 127.0, 128.4, 131.1 (*o*,*m*,*p*-*Ph*), 135.0(*i*-*Ph*), 166.9(*C*=O); *m*/*z* (ESI⁺) 216 ([M+H]⁺, 40%), 238 ([M+Na]⁺, 40%), 453 ([2M+Na]⁺, 100%), 668 ([3M+Na]⁺, 60%); HRMS (ESI⁺) C₁₄H₁₇NNaO⁺ ([M+Na]⁺) requires 238.1202, found 238.1200.

4.43. Methyl (1RS,2RS,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 67

Following General procedure 2, **59** (100 mg, 0.64 mmol), ZnEt₂ (1.93 mL, 1.93 mmol), CH₂I₂ (0.31 mL, 3.87 mmol), TFA (0.15 mL, 1.93 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 4 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 1:0 to 9:1 gradient elution), **67** as a white crystalline

solid (90 mg, 83%, 98:2 dr); mp 50–52 °C; ν_{max} (KBr) 3305 (N–H), 1690 (C=O), 1540, 1255, 1095, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.01–0.05 (1H, m, C(7)H_A), 0.59 (1H, td, J 9.2, 4.9, C(7)H_B), 0.73–0.79 (1H, m, C (1)H), 0.87–0.95 (1H, m, C(6)H), 1.00–1.09 (1H, m, C(4)H_A), 1.13–1.22 (1H, m, C(3)H_A), 1.27–1.37 (1H, m, C(4)H_B), 1.42–1.49 (1H, m, C(3)H_B), 1.55–1.61 (1H, m, C(5)H_A), 1.77 (1H, app dq, J 13.7, 6.9, C (5)H_B), 3.62 (3H, s, OMe), 3.79–3.85 (1H, br m, C(2)H), 5.08 (1H, br s, NH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 9.2 (C(7)), 9.7 (C(6)), 16.1 (C(1)), 16.7 (C (4)), 22.6 (C(5)), 27.9 (C(3)), 46.8 (C(2)), 51.7 (OMe), 156.3 (C=O); m/z (ESI⁺) 170 ([M+H]⁺, 25%), 192 ([M+Na]⁺, 40%), 339 ([2M+H]⁺, 30%), 361 ([2M+Na]⁺, 100%); HRMS (ESI⁺) C₉H₁₅NNaO₂⁺ ([M+Na]⁺) requires 192.0995, found 192.0999.

4.44. Phenyl (1RS,2RS,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 68

Following General procedure 2, 60 (100 mg, 0.46 mmol), ZnEt₂ (1.38 mL, 1.38 mmol), CH₂I₂ (0.22 mL, 2.76 mmol) and TFA (0.11 mL, 1.38 mmol) in CH₂Cl₂ (1.5 mL) were reacted for 4 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 1:0 to 9:1 gradient elution), 68 as a white solid (80 mg, 75%, 95:5 dr); mp 110–112 °C; v_{max} (KBr) 3320 (N–H), 2930 (C–H), 1710 (C=O), 1540, 1490, 1215, 690, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.12 (1H, app q, J 5.3, C(7)H_A), 0.69 (1H, td, J 9.2, 5.0, C(7)H_B), 0.87–0.93 (1H, m, C(1)H), 0.97–1.05 (1H, m, C(6)H), 1.11–1.20 (1H, m, C(4)H_A), 1.25–1.37 (1H, m, C(3)H_A), 1.37–1.46 (1H, m, C(4)H_B), 1.54–1.73 (2H, m, C(3)H_B, C(5)H_A), 1.87 (1H, app dq, J 13.7, 6.8, C(5)H_B), 3.97 (1H, app q, J 6.3, C(2)H), 5.36 (1H, br d, J 6.9, NH), 7.14-7.21 (3H, m, Ph), 7.36 (2H, app t, J 7.8, Ph); δ_C (100 MHz, CDCl₃) 9.4 (C(7)), 9.7 (C(6)), 16.0 (C(1)), 16.8 (C(4)), 22.7 (C(5)), 27.7 (C(3)), 47.1 (C(2)), 121.6, 125.2, 129.2 (o,m,p-Ph), 151.1 (i-Ph), 153.8 (C=O); m/z (ESI⁺) 232 ([M+H]⁺, 30%), 290 ([M+MeCN+NH₄]⁺, 60%), 485 ([2M+Na]⁺, 100%); HRMS (ESI⁺) C₁₄H₁₇NNaO₂⁺ ([M+Na]⁺) requires 254.1151, found 254.1163.

4.45. Benzyl (1RS,2RS,6SR)-bicyclo[4.1.0]hept-2-ylcarbamate 69

Following General procedure 2, 61 (231 mg, 1.00 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (150 µL, 2.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 4 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 4:1), 69 as a white solid (218 mg, 89%, 98:2 dr); mp 44–45 °C; v_{max} (KBr) 3330 (N–H), 2935 (C–H), 1700 (C=O), 1530, 1240, 1090, 695, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.09 (1H, app d, J 5.0, C $(7)H_{\rm A}$, 0.63–0.68 (1H, m, C(7)H_B), 0.80–0.85 (1H, m, C(1)H), 0.92–0.97 (1H, m, C(6)H), 1.06–1.13 (1H, m, C(4)H_A), 1.20–1.26 (1H, m, C(3)*H*_A), 1.37 (1H, dd, *J* 13.2, 6.9, C(4)*H*_B), 1.50–1.54 (1H, m, C(3) *H*_B), 1.60–1.66 (1H, m, C(5)*H*_A), 1.79–1.84 (1H, m, C(5)*H*_B), 3.89-3.93 (1H, m, C(2)H), 5.08-5.18 (3H, m, NH, OCH₂Ph), 7.29–7.37 (5H, m, Ph); δ_C (100 MHz, CDCl₃) 9.3 (C(7)), 9.7 (C(6)), 16.1 (*C*(1)), 16.8 (*C*(4)), 22.7 (*C*(5)), 27.9 (*C*(3)), 46.9 (*C*(2)), 66.5 (OCH₂Ph), 128.0, 128.1, 128.5 (o,m,p-Ph), 136.7 (*i*-Ph), 155.7 (C=O); m/z (ESI⁺) 268 ([M+Na]⁺, 60%), 304.2 ([M+NH₄+MeCN]⁺, 100%), 513

([2M+Na]⁺, 80%); HRMS (ESI⁺) $C_{15}H_{19}NNaO_2^+$ ([M+Na]⁺) requires 268.1308, found 268.1308.

4.46. (1RS,2RS,6SR)-N-(Bicyclo[4.1.0]hept-2-yl)benzamide 70

Following General procedure 2, 62 (201 mg, 1.0 mmol), ZnEt₂ (2.0 mL, 2.0 mmol), CH₂I₂ (0.32 mL, 4.0 mmol) and TFA (0.15 mL, 2.0 mmol) in CH₂Cl₂ (2.0 mL) were reacted for 6 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/EtOAc, 7:3 to 1:1 gradient elution), 70 as a white solid (173 mg, 80%, >99:1 dr); mp 128–130 °C; v_{max} (KBr) 3310 (N–H), 3060, 2930 (C–H), 1630 (C=O), 1540, 1490, 1320, 1270, 695, 665; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.10 (1H, app q, *J* 5.3, C(7)*H*_A), 0.64 (1H, td, *J* 9.2, 4.9, C(7)H_B), 0.81–0.87 (1H, m, C(1)H), 0.91–0.98 (1H, m, C(6)H), 1.06-1.14 (1H, m, C(4)H_A), 1.26-1.43 (2H, m, C(3)H_A, C(4)H_B), 1.53–1.67 (2H, m, C(3)H_B, C(5)H_A), 1.75–1.84 (1H, m, C(5)H_B), 4.25-4.30 (1H, m, C(2)H), 6.74 (1H, d, J 7.6, NH), 7.34-7.38 (2H, m, *Ph*), 7.41–7.45 (1H, m, *Ph*), 7.78–7.80 (2H, m, *Ph*); δ_{C} (100 MHz, CDCl₃) 9.3 (C(7)), 9.9 (C(1)), 15.9 (C(6)), 17.1 (C(4)), 22.7 (C(5)), 27.8 (C(3)), 45.8 (C(2)), 127.0, 128.4, 131.2 (o,m,p-Ph), 135.0 (i-Ph), 166.7 (C=O); *m*/*z* (ESI⁺) 274 ([M+NH₄+MeCN]⁺, 100%), 453 ([2M+Na]⁺, 70%); HRMS (ESI⁺) C₁₄H₁₇NNaO⁺ ([M+Na]⁺) requires 238.1202, found 238.1209.

4.47. (1RS,2RS,6SR)-N-(Bicyclo[4.1.0]heptan-2-yl)-4'- methylbenzenesulfonamide 72

Method A: Following General procedure 1, **71**^{23,75} (251 mg, 1.00 mmol), $ZnEt_2$ (2.0 mL, 2.0 mmol) and CH_2I_2 (0.32 mL, 4.0 mmol) in CH₂Cl₂ were reacted for 1 h to give, after purification by flash column chromatography (eluent 30–40 °C petrol/Et₂O, 1:0 to 3:1 gradient elution), **72** as a white solid (160 mg, 60%, >99:1 dr); mp 68–70 °C; ν_{max} (KBr) 3260 (N–H), 3065, 3005, 2935, 2860 (C-H), 1600, 1450, 1325 (SO₂N), 1160 (SO₂N), 1095, 1070, 930, 815, 670; δ_H (400 MHz, CDCl₃) 0.09 (1H, app q, J 5.3, C(7)H_A), 0.42 (1H, app td, J 8.8, 4.9, C(7)H_B), 0.82–0.93 (2H, m, C(1)H, C(3)H_A), 0.96–1.13 (2H, m, C(4)H_A, C(6)H), 1.20–1.36 (2H, m, C(4)H_B C(5)H_A), 1.56–1.62 (1H, m, C(3)H_B), 1.77–1.84 (1H, m, C(5)H_B), 2.41 (3H, s, C (4')Me), 3.69 (1H, ddt, / 10.5, 7.8, 5.5, C(2)H), 4.90 (1H, d, / 7.7, NH), 7.28 (2H, d, J 8.4, C(3')H, C(5')H), 7.81 (2H, d, J 8.4, C(2')H, C(6')H); δ_C (100 MHz, CDCl₃) 8.1 (C(7)), 12.4 (C(6)), 15.8 (C(1)), 21.5 (C(4)), 21.6 (C(4')Me) 22.6 (C(5)), 28.3 (C(3)), 50.3 (C(2)), 127.0 (C(2'), C(6')), 129.6 (C(3'), C(5')), 138.7 (C(4')), 143.0 (C(1')); m/z (ESI⁻) 264 ([M–H]⁻, 100%); HRMS (ESI⁺) C₁₄H₁₉NNaO₂S⁺ ([M+Na]⁺) requires 288.1029, found 288.1032.

Method B: Following General procedure 2, **71** (126 mg, 0.50 mmol), ZnEt₂ (1.0 mL, 1.0 mmol), CH₂I₂ (0.16 mL, 2.0 mmol) and TFA (0.07 mL, 1.0 mmol) in CH₂Cl₂ were reacted for 1 h to give, after purification by flash column chromatography (eluent 30-40 °C petrol/Et₂O, 1:0 to 3:1 gradient elution), **72** as a white solid (70 mg, 53%); mp 66–68 °C.

4.47.1. X-ray Crystal Structure Determination for 72. Data were collected using an Enraf–Nonius κ -CCD diffractometer with graphite monochromated Mo K α radiation using standard

procedures at 150 K. The structure was solved by direct methods (SIR92); all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were added at idealised positions. The structure was refined using CRYSTALS.⁶²

X-ray crystal structure data for **72** [$C_{14}H_{19}NO_2S$]: M=263.36, monoclinic, space group $P 2_1/c$, a=10.0211(5) Å, b=12.9160(7) Å, c=11.1049(6) Å, $\beta=105.377(4)^\circ$, V=1385.88(13) Å³, Z=4, $\mu=0.228$ mm⁻¹, colourless plate, crystal dimensions= $0.12 \times 0.24 \times 0.37$ mm. A total of 3073 unique reflections were measured for $5<\theta<27$ and 2129 reflections were used in the refinement. The final parameters were $wR_2=0.068$ and $R_1=0.083$ [$I>1.5\sigma(I)$]. Crystallographic data (excluding structure factors) has been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 783814. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 1223 336033 or e-mail; deposit@ccdc.cam.ac.uk].

4.48. (1RS,2SR,3RS)-N-Benzylbicyclo[4.1.0]heptan-2-amine 73

Pd/C (10% wt, 29 mg) was added to a degassed solution of 9 (58 mg, 0.20 mmol) in MeOH/H₂O/AcOH (40:4:1, 2 mL) and the resultant suspension was stirred under $H_2(1 \text{ atm})$ for 16 h. The reaction mixture was then filtered through Celite (eluent MeOH) and the filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (10 mL) and the resultant solution was washed with satd aq NaHCO₃ $(3 \times 10 \text{ mL})$ then dried and concentrated in vacuo to give **73** as a pale yellow oil (28 mg, 65%, >99:1 dr); v_{max} (film) 2930, 2857 (C–H), 1454; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.19 (1H, app q, J 5.3, C(7)H_A), 0.53-0.59 (1H, m, C(7)*H*_B), 0.78–0.90 (1H, m, C(3)*H*_A), 1.06–1.22 (3H, m, C(1)*H* and C(6) H, C(4)H_A), 1.35–1.45 (2H, m, C(5)H_A, C(4)H_B), 1.52 (1H, br s, NH), 1.62–1.68 (1H, m, C(3)H_B), 1.88–1.94 (1H, m, C(5)H_B), 3.08–3.13 (1H, m, C(2)H), 3.88 (1H, d, J 12.9, NCH_APh), 3.96 (1H, d, J 12.9, NCH_BPh), 7.24–7.27 (1H, m, Ph), 7.32–7.38 (4H, m, Ph); δ_C (100 MHz, CDCl₃) 7.5 (C(7)), 11.6 (C(1)), 15.7 (C(6)), 21.6 (C(4)), 23.8 (C(5)), 27.9 (C(3)), 50.8 (NCH₂Ph), 51.8 (C(2)), 126.8, 128.2, 128.4 (o,m,p-Ph), 141.0 (i-Ph); m/z (ESI⁺) 202 ([M+H]⁺, 100%); HRMS (ESI⁺) C₁₄H₂₀N⁺ ([M+H]⁺) requires 202.1590, found 202.1588.

4.49. (1*RS*,2*SR*,3*RS*)-Bicyclo[4.1.0]heptan-2-amine trifluoroacetate 74

Method A: Pd/C (50 mg, 10% wt) was added to a degassed solution of **9** (100 mg, 0.34 mmol) in MeOH/H₂O/AcOH (40:4:1, 0.6 mL). The vessel was charged with H₂ (5 atm) and the reaction mixture was stirred rapidly at rt for 16 h, after which time the solution was filtered through a pad of Celite (eluent MeOH) and TFA (1.0 mL) was added. The resultant mixture was concentrated in vacuo to give **74** as a pale yellow oil (77 mg, quant, >99:1 dr); ν_{max} (film) 3425 (N–H), 2935 (C–H), 1680, 1205, 1140; δ_{H} (400 MHz, CDCl₃) 0.38 (1H, app q, *J* 5.0, C(7)*H*_A), 0.66–0.71 (1H, m, C(7)*H*_B), 1.05–1.10 (1H, m, C (3)*H*_A), 1.15–1.26 (3H, m, C(1)*H*, C(6)*H*, C(4)*H*_A), 1.35–1.43 (1H, m, C (5)*H*_A), 1.47–1.52 (1H, m, C(4)*H*_B), 1.74–1.79 (1H, m, C(3)*H*_B), 1.92–1.97 (1H, m, C(5)*H*_B), 3.70–3.80 (1H, m, C(2)*H*), 7.62 (3H, br s, NH₃); δ_{C} (100 MHz, CDCl₃) 8.1 (*C*(7)), 12.1 (*C*(1)), 13.0 (*C*(6)), 20.8 (*C* (4)), 22.1 (*C*(5)), 24.7 (*C*(3)), 49.0 (*C*(2)); *m/z* (FI⁺) 112 ([M+H]⁺,

100%); HRMS (FI⁺) $C_7H_{14}N^+$ ([M+H]⁺) requires 112.1126, found 112.1124.

Method B: N₂H₄·H₂O (8 μ L, 0.16 mmol) was added to a stirred solution of **50** (34 mg, 0.15 mmol) in MeOH (2 mL) at rt and the resultant suspension was heated at reflux for 16 h. The reaction mixture was then allowed to cool to rt, filtered and concentrated in vacuo. The residue was triturated with CHCl₃ (3×10 mL) and the organic washings were acidified to pH 2 with TFA (1 mL) then concentrated in vacuo to give **74** as a pale yellow oil (32 mg, quant, >99:1 dr).

Method C: Pd/C (4 mg, 10% wt) was added to a degassed solution of **65** (12 mg, 0.05 mmol) in MeOH/EtOAc (4:1, 0.5 mL) and the resultant mixture was stirred under H₂ (1 atm) for 1 h. The reaction mixture was then filtered through Celite (eluent EtOAc), TFA (50 μ L) was added to the filtrate and the resultant mixture was concentrated in vacuo to give **74** as a yellow oil (10 mg, quant, >99:1 dr).

Method D: TFA (30 μ L, 0.43 mmol) was added to a stirred solution of **53** (30 mg, 0.14 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C and the resultant mixture was stirred at 0 °C for 3 h. The reaction mixture was then allowed to warm to rt and concentrated in vacuo to give **74** as a yellow oil (32 mg, quant, >99:1 dr).

4.50. (1RS,2RS,3SR)-Bicyclo[4.1.0]heptan-2-amine trifluoroacetate 75

Method A: N₂H₄·H₂O (11 µL, 0.23 mmol) was added to a stirred solution of **51** (50 mg, 0.21 mmol) in MeOH (2 mL) at rt and the resultant suspension was heated at reflux for 16 h. The reaction mixture was then allowed to cool to rt, filtered and concentrated in vacuo. The residue was triturated with CHCl₃ (3×10 mL) and the organic washings were acidified to pH2 with TFA (~1 mL) then concentrated in vacuo to give **75** as a pale yellow oil (47 mg, quant, >99:1 dr); ν_{max} (film) 3440 (N–H), 1680 (C=O), 1440, 1205, 1140; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.13 (1H, app d, *J* 4.6, C(7)*H*_A), 0.72–0.77 (1H, m, C(7)*H*_B), 0.87–0.91 (1H, m, C(1)*H*), 1.06–1.12 (2H, m, C(6)*H*, C(4)*H*_A), 1.28–1.37 (1H, m, C(3)*H*_A), 1.44–1.49 (1H, m, C(4)*H*_B), 1.65–1.71 (2H, m, C(5)*H*_A, C (3)*H*_B), 1.80–1.88 (1H, m, C(5)*H*_B), 3.44–3.48 (1H, m, C(2)*H*), 7.89 (3H, br s, NH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 9.0 (C(7)), 10.1 (C(6)), 12.9 (C(1)), 15.7 (C (4)), 21.9 (C(5)), 26.3 (C(3)), 48.2 (C(2)); *m/z* (FI⁺) 112 ([M+H]⁺, 100%); HRMS (FI⁺) C₇H₁₅N⁺ ([M+H]⁺) requires 111.1126, found 111.1124.

Method B: Pd/C (10% wt, 30% w/w, 12 mg) was added to a degassed solution of **69** (39 mg, 0.16 mmol) in MeOH/EtOAc (4:1, 2.0 mL) and the resultant mixture was stirred under H₂ (1 atm) for 1 h. The reaction mixture was then filtered through Celite (eluent EtOAc), TFA (159 μ L) was added to the filtrate and the resultant mixture was concentrated in vacuo to give **75** as a yellow oil (33 mg, quant, >99:1 dr).

Method C: TFA (30 μ L, 0.43 mmol) was added to a stirred solution of **54** (30 mg, 0.14 mmol) in CH₂Cl₂ (1 mL) at 0 °C and the resultant mixture was stirred at 0 °C for 3 h. The reaction mixture was then allowed to warm to rt and concentrated in vacuo to give **75** as a yellow oil (32 mg, quant, >99:1 dr);

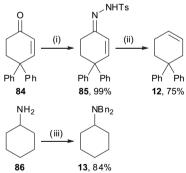
4.51. Benzyl (RS)-cyclohexylcarbamate 77

NEt₃ (1.53 mL, 11.0 mmol) and benzyl chloroformate (1.57 mL, 11.0 mmol) were sequentially added to a stirred solution of

cyclohexylamine (1.14 mL, 10.0 mmol) in THF (100 mL) at 0 °C. The resultant mixture was stirred for 16 h at rt then washed with brine (100 mL). The aqueous layer was extracted with CH₂Cl₂ (2×50 mL) and the combined organic extracts were dried and concentrated in vacuo to give **77** as a white solid (2.32 g, 99%);⁷⁶ mp 82–84 °C (lit.⁷⁶ mp 79–80 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.08–1.22 (3H, m, 3×CH₂), 1.31–1.40 (2H, m, 2×CH₂), 1.56–1.64 (1H, m, 1×CH₂), 1.66–1.74 (2H, m, 2×CH₂), 1.93–1.96 (2H, m, 2×CH₂), 3.51–3.53 (1H, m, CHN), 4.66 (1H, br s, NH), 5.09 (2H, br s, OCH₂Ph), 7.30–7.40 (5H, m, Ph).

4.52. (RS,RS)-1-Phenylbicyclo[4.1.0]heptane 79

Following General procedure 1, **76** (154 mg, 0.50 mmol), ZnEt₂ (0.5 mL, 0.5 mmol) and CH₂I₂ (81 µL, 1.0 mmol) in CH₂Cl₂ (0.5 mL) were reacted for 1 h to give **79** as a colourless oil (160 mg, 60%, >99:1 dr);^{13c} $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.64 (1H, dd, *J* 5.6, 4.3, C(7)*H*_A), 0.95 (1H, dd, *J* 9.4, 4.5, C(7)*H*_B), 1.21–1.42 (4H, m, 3×CH₂, C(6)*H*), 1.45–1.52 (1H, m, 1×CH₂), 1.92–1.99 (1H, m, 1×CH₂), 2.03–2.12 (2H, m, 2×CH₂), 7.14–7.18 (1H, m, *Ph*), 7.27–7.29 (4H, m, *Ph*).


Acknowledgements

The authors would like to thank the Oxford Chemical Crystallography Service for the use of their X-ray diffractometers.

References and notes

- For instance, see: (a) Patai, S.; Rappoport, Z. The Chemistry of the Cyclopropyl Group; Wiley: New York, NY, 1987; (b) Donaldson, W. A. Tetrahedron 2001, 57, 8589; (c) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251.
- 2. Yang, S. F.; Hoffmann, N. E. Annu. Rev. Plant Physiol. 1984, 35, 155.
- (a) Kuo, M. S.; Zielinski, R. J.; Cialdella, J. I.; Marschke, C. K.; Dupuis, M. J.; Li, G. P.; Kloosterman, D. A.; Spilman, C. H.; Marshall, V. P. J. Am. Chem. Soc. 1995, 117, 10629; (b) Yalpani, M. Chem. Ind. 1996, 85.
- 4. Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625.
- (a) Silberrad, O.; Roy, C. S. J. Chem. Soc. Trans. **1906**, 89, 179; (b) Hubert, A. J.; Noels, A. F.; Anciaux, A. J.; Teyssié, P. Synthesis **1976**, 600; (c) Hanafi, N.; Ortuñu, R. M. Tetrahedron: Asymmetry **1994**, 5, 1657; (d) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem. **1991**, 56, 4167.
 For reviews, see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
- For reviews, see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977; (b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307; (c) Dave, V.; Warnhoff, E. W. Org. React. 1970, 18, 217; (d) Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1; (e) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: from Cyclopropanes to Ylides; Wiley: New York, NY, 1998.
- For asymmetric variants, see: (a) Fritschi, H.; Leutenegger, U.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1986, 25, 1005; (b) Pelissier, H. Tetrahedron 2008, 64, 7041;
 (c) Nishiyama, H.; Itoh, Y.; Matsumoto, H.; Park, S.-B.; Itoh, K. J. Am. Chem. Soc. 1994, 116, 2223; (d) Niimi, T.; Uchida, T.; Irie, R.; Katsuki, T. Adv. Synth. Catal. 2001, 343, 79; (e) Kirkland, T. A.; Colucci, J.; Geraci, L. S.; Marx, M. A.; Schneider, M.; Kailin, D. E., Jr.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 12432; (f) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
- (a) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353; (b) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1967, 89, 3912.
- For asymmetric variants, see: (a) Kakei, H.; Sone, T.; Sohtome, Y.; Matsanuga, S.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 13410; (b) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341; (c) Kunz, R. K.; Macmillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3240; (d) Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2003, 42, 828; (e) Bremeyer, N.; Smith, S. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 2681; (f) Papageorgiou, C. D.; de Dios, M. A. C.; Ley, S. V.; Gaunt, M. J. Angew. Chem., Int. Ed. 2004, 43, 4641; (g) Johansson, C. C. C.; Bremeyer, N.; Ley, S. V.; Owen, D. R.; Smith, S. C.; Gaunt, M. J. Angew. Chem., Int. Ed. 2006, 45, 6024. For general reviews, see Refs. 6a,b.
- For instance, see: (a) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A. Org. React. 1973, 20, 1; (b) Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1.
- For other approaches, see: (a) Hodgson, D. M.; Chung, Y. K.; Paris, J.-M. J. Am. Chem. Soc. 2004, 126, 8664; (b) Hodgson, D. M.; Humphreys, P. G.; Miles, S. M.; Brierley, C. A. J.; Ward, J. G. J. Org. Chem. 2007, 72, 10009; (c) Hodgson, D. M.; Humphreys, P. G.; Ward, J. G. Org. Lett. 2006, 8, 995; (d) Hodgson, D. M.; Chung, Y. K.; Nuzzo, I.; Freixas, G.; Kuliliewicz, K. K.; Cleator, E.; Paris, J.-M. J. Am. Chem. Soc. 2007, 129, 4456.

- 12. Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
- (a) Yang, Z.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621; (b) Charette, A. 13. B.; Beauchemin, A.; Francoeur, S. J. Am. Chem. Soc. 2004, 69, 8139; (c) Lorenz, J. C.; Long, J.; Yang, Z.; Xue, S.; Xie, Y.; Shi, Y. J. Org. Chem. 2004, 69, 327; (d) Voituriez, A.; Zimmer, L. E.; Charette, A. B. J. Org. Chem. 2010, 75, 1244.
- 14. (a) Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 8254; (b) Kaye, P. T.; Molema, W. E. Chem. Commun. 1998, 2479; (c) Marsh, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Deusen, S. V. J. Org. Chem. 1990, 55, 2045; (d) Morikawa, T.; Sasaki, H.; Hanai, R.; Shibuya, A.; Taguchi, T. J. Org. Chem. 1994, 59, 97; (e) Evans, D. A.; Burch, J. D. Org. Lett. 2001, 3, 503.
- Tanaka, K.; Uno, H.; Osuga, H.; Suzuki, H. Tetrahedron: Asymmetry 1994, 5, 1175. 15
- 16. Imai, T.; Mineta, H.; Nishida, S. J. Org. Chem. **1990**, 55, 4986.
- (a) Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1; (b) Aggarwal, 17. V. K.; Fang, G. Y.; Charmant, J. P. H.; Meek, G. Org. Lett. 2003, 5, 1757.
- 18. A single example of the Simmons-Smith cyclopropanation of an allylic amine had previously been reported prior to 1993, although no experimental details were provided, see: Perraud, R.; Arnaud, P. Bull. Soc. Chim. Fr. 1968, 1540.
 Aggarwal, V. K.; Fang, G. Y.; Meek, G. Org. Lett. 2003, 5, 4417.
- Katagiri, T.; Iguchi, N.; Kawate, T.; Takahashi, S.; Uneyama, K. Tetrahedron: Asymmetry 2006, 17, 1157.
- For cyclopropanation studies, see: (a) Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson, J. E. *Chem. Commun.* **2007**, 4029; (b) Csatayová, K.; 21 Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson, J. E. Org. Lett. 2010 12 3152
- For epoxidation studies, see: (a) Aciro, C.; Claridge, T. D. W.; Davies, S. G.; Roberts, P. M.; Russell, A. J.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 3751; (b) Aciro, C.; Davies, S. G.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 3762; (c) Bond, C. W.; Cresswell, A. J.; Davies, S. G.; Fletcher, A. M.; Kurosawa, W.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. J. Org. Chem. 2009, 74, 6735; (d) Bagal, S. K.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Scott, P. M.; Thomson, J. E. Org. Lett. 2010, 12, 136.
- 23. For aziridination studies, see: Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Woods, P. A. Tetrahedron 2010, 66, 6806.
- 24. Allylic amine 8 was prepared according to the procedure detailed in Ref. 22a
- (a) Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, 20, 652; (b) Furukawa, J.; 25. Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53.
- Denmark, S.; O'Connor, S. P. J. Org. Chem. 1997, 62, 3390. 26
- 27. As determined by peak integration of the ¹H NMR spectrum of the crude reaction mixture.
- 28 Attempts at N-methylation of 9 with either MeI or MeOTf were not successful, even at elevated temperatures.
- 29. Alternative (iodomethyl)zinc acetate reagents were also screened, although it was found that the yield of syn-9 increased with the reactivity of the carbenoid used [CH₃CO₂ZnCH₂I, <10%; CH₂ClCO₂ZnCH₂I, 62%; CHCl₂CO₂ZnCH₂I, 89%; CCl₃CO₂ZnCH₂I, 66%; CF₃CO₂ZnCH₂I, 92%].
- Extended reaction times led to lower yields of the desired cyclopropane 30. product syn-9 [1 h, 92%; 6 h, 71%; 12 h, 64%].
- 31. 4,4-Diphenylcyclohex-1-ene 12 was synthesised in two steps from commercially available enone 84 in 74% overall yield. N,N-Dibenzyl cyclohexylamine 13 was synthesised by benzylation of cyclohexylamine 86 to give 13 in 84% yield, according to the procedure detailed in: Ju, Y.; Varma, R. S. Green Chem. 2004, 6, 219.

Reagents and conditions: (i) TsNHNH2, MeOH/PhMe (2:1), rt, 16 h; (ii) catechol borane, CHCl₃, 0 °C to rt, 2 h then NaOAc ·H₂O, 60 °C, 1 h; (iii) BnBr, NaOH (0.5 M ag), 80 °C, 30 min.

- 32. It is known that external ligands, such as DME, significantly reduce the rate of reaction of the Wittig-Furukawa reagent [Zn(CH₂I)₂]. See: Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 2592.
- Transition state 15 is analogous to the corresponding proposed transition states 33. for the cyclopropanation of allylic alcohols with zinc carbenoid reagents, see: (a) Wittig, G.; Wingler, F. Chem. Ber. 1964, 97, 2146; (b) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 2341; (c) Blanchard, E. P.; Simmons, H. E. J. Am. Chem. Soc. 1964, 86, 1337.
- 34. Allylic amines 16-18 were prepared according to the procedures detailed in Ref 22c
- 35. Several instances of syn-selective osmylation and epoxidation reactions of 3substituted cyclopentenes which proceed in the absence of any obvious

associative interactions (e.g., hydrogen bonding) in the transition state have been reported; see: (a) Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.; Helliwell, M.; Newcombe, N. J.; Stemp, G. J. Org. Chem. 2002, 67, 7946; (b) Ward, S. E.; Holmes, A. B.; McCague, R. Chem. Commun. 1997, 2085; (c) Aggarwal, V. K.; Monteiro, N. J. Chem. Soc., Perkin Trans. 1 1997, 2531. Poli has proposed a model to account for these observations, in which attack on the syn-face is favoured due to minimization of torsional strain in the transition state, see: (d) Poli, G. Tetrahedron Lett. 1989, 30, 7385. Houk has coined the term 'torsional steering' for this effect, see: (e) Cheong, P. H.-Y.; Yun, H.; Danishefsky, S. J.; Houk, K. N. Org. Lett. 2006, 8, 1513.

- 36. Meier, H.; Antony-Mayer, C.; Schulz-Popitz, C.; Zerban, G. Liebigs Ann. Chem. 1987, 12, 1087.
- 37. For the anti-selective epoxidation of cis-cyclooct-2-en-1-ol, see: (a) Itoh, T.; Kaneda, K.; Teranishi, S. J. Chem. Soc., Chem. Commun. 1976, 421; (b) Cope, A. C.; Keough, A. H.; Peterson, P. E.; Simmons, H. E.; Wood, G. W. J. Am. Chem. Soc. 1957, 79, 3900.
- For a discussion of the conformation of cyclooctane derivatives, such as cis-38 cyclooctene see: Still, W. C.; Galynker, I. Tetrahedron 1981, 37, 3981.
- crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication 39 number CCDC 733890, see also Ref. 22c.
- 40. Poulter, C. D.; Friedrich, E. C.; Winstein, S. J. Am. Chem. Soc. 1969, 91, 6892.
- Molander, G. A.; Harring, L. S. J. Org. Chem. 1989, 54, 3525. 41.
- 42. Leong, M. K.; Mastryukov, V. S.; Boggs, J. E. J. Mol. Struct. 1998, 445, 149.
- Crystallographic data (excluding structure factors) have been deposited with 43. the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 733888, see also Ref. 22c.
- 44 Abraham, R. J.; Castellazzi, I.; Sancassan, F.; Smith, T. A. D. J. Chem. Soc., Perkin Trans. 2 1999. 99
- 45. α-Benzotriazolyl substituted amine 22 was prepared on a multigram (>20 g) scale in 87% yield by condensation of benzaldehyde with dibenzylamine and benzotriazole. The corresponding reaction with isobutyraldehyde gave 23 in 81% yield, also on a >20 g scale, according to the procedure detailed in: Katrizky, A. R.; Nair, S. K.; Qiu, Q. Synthesis 2002, 199.
- 46 In the cyclopropanation of (Z)-24 (91:9 dr) and (Z)-26 (96:4 dr), the diastereoisomeric purity of the starting material was maintained in the products. Additionally, the observed minor diastereoisomer from the reaction of (Z)-24 matched the major product from the cyclopropanation of (E)-29 by ^{1}H NMR spectroscopic analysis.
- 47. In each case the syn-configurations of the major diastereoisomers were tentatively assigned assuming N-directed cyclopropanation via a conformation, which minimises 1,2-allylic strain.
- 48 For studies on a related system, see: Ezzitouni, A.; Russ, P.; Marquez, V. E. J. Org. Chem. 1997, 62, 4870.
- 49 Coote, S. C.; O'Brien, P.; Whitwood, A. C. Org. Biomol. Chem. 2008, 6, 4299.
- Crystallographic data (excluding structure factors) have been deposited with 50. the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 644843; see also Ref. 21a.
- 51. The cyclopropanation of an allylic carbamate was first reported in 1972. The reaction of ethyl (RS)-cyclohex-2-en-1-ylcarbamate under Simmons-Smith conditions was reported to give the syn-diastereoisomer in 75-95% yield, see: Tardella, P. A.; Pellacani, L.; DiStazio, G. Gazz. Chim. Ital. 1972, 102, 822.
- 52. Simmons-Smith cyclopropanations of similar systems have been reported; for the cyclopropanation of an allylic carbamate, see: (a) Pilar de Frutos, M.; Fernández, M. D.; Fernández-Alvarez, E.; Bernabé, M. Tetrahedron Lett. 1991, 32, 541; (b) Newombe, N. J.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1995, 831; (c) Mohapatra, D. K. J. Chem. Soc., Perkin Trans. 1 2001, 1851; (d) Pietruszka, J.; Witt, A.; Frey, W. Eur. J. Org. Chem. 2003, 68, 3219. For the cyclopropanation of an allylic amide, see: (e) For the cyclopropanation of an allylic phosphonamide, see: Russ, P.; Ezzitouni, A.; Marquez, V. E. Tetrahedron Lett. 1997, 38, 723; Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761.
- 53. Substrates **59–61** were prepared in 57–83% yield via the $Bi(OTf)_3$ -catalysed S_N' substitution of cyclohex-2-enol 46 with a range of carbamates, see: Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. **2007**, 46, 409.
- (a) McBriar, M. D.; Guzik, H.; Xu, R.; Paruchova, J.; Li, S.; Palani, A.; Clader, J. W.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O'Neill, K.; Spar, B.; Weig, B. J. Med. Chem. 2005, 48, 2274; (b) McBriar, M. D.; Guzik, H.; Shapiro, S.; Xu, R.; Paruchova, J.; Clader, J. W.; O'Neill, K.; Hawes, B.; Sorota, S.; Margulis, M.; Tucker, K.; Weston, D. J.; Cox, K. Bioorg. Med. Chem. Lett. 2006, 16, 4262; (c) Kowalski, T. J.; Spar, B. D.; Weig, B.; Farley, C.; Cook, J.; Ghibaudi, L.; Fried, S.; O'Neill, K.; Del Vecchio, R. A.; McBriar, M.; Guzik, H.; Clader, J.; Hawes, B. E.; Hwa, J. Eur. J. Pharmacol. 2006, 535, 182; (d) Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Nagase, Y.; Iida, I.; Yamaguchi, J.; Semple, G.; Tran, T.-A.; Sekiguchi, Y. Bioorg. Med. Chem. 2006, 14, 3307; (e) McBriar, M. D.; Guzik, H.; Shapiro, S.; Paruchova, J.; Xu, R.; Palani, A.; Clader, J. W.; Cox, K.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O'Neill, K.; Spar, B. D.; Weig, B.; Weston, D. J.; Farley, C.; Cook, J. J. Med. Chem. 2006, 49, 2294.
- 55. As in the previous mechanistic investigations concerning the cyclopropanation of N,N-dibenzyl protected allylic amine 8, the use of cyclohexene as an external olefin to mimic the cyclopropanation of allylic carbamate 61 was not practical due to its relatively high volatility (bp 83 °C).
- Carbamate 77 was readily synthesised from cyclohexylamine 86 in 99% yield by 56. reaction with benzyl chloroformate.
- 57. The relative configuration within syn-80 was established by single crystal X-ray analysis. Crystallographic data (excluding structure factors) have been

deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 779449; see also Ref. 21b.

- The observation that the total conversion is greater than 100% may indicate 58. that the deprotonation step does not proceed to 100% conversion. This would allow a proportion of the $Zn(CH_2I)_2$ to transfer more than 1.0 equiv of carbene.
- 59. Aliquots were taken every 5 min from the reaction of either **76** or **78** with 2. 0 equiv of Zn(CH₂I)₂ and the product distributions were analysed by ¹H NMR spectroscopic analysis.
- 60. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, 15, 1518.
- Charette, A. B. Chem. Eng. News 1995, 73, 2. 61.
- 62. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, C. K.; Watkin, D. J. *CRYSTALS*; betterluge, P. W., Calturiets, J. K., Cooper, K. L., Plott, C. K., Watkin, D. J. C. Chemical Crystallography Laboratory, University of Oxford: U.K, 2010.
 Freeman, P. K.; Tafesh, A. M.; Clapp, G. E. J. Org. Chem. **1989**, *54*, 782.
 Ratcliff, M. A., Jr.; Kochi, J. K. Tetrahedron **1972**, *28*, 4467.
 Katritzky, A. R.; Rachwal, S.; Rachwal, B. J. Org. Chem. **1994**, *59*, 5206.

- 66. Katritzky, A. R.; Yannakopoulou, K.; Lue, P.; Rasada, D.; Urogdi, L. J. Chem. Soc., Perkin Trans. 1 1989, 225. 67. This sample was found to be contaminated with approximately 10% of 4-(N,N-
- dibenzylamino)-4-phenylbut-2-yne.
- 68. A resonance corresponding to C(2') was not observed in the ¹³C NMR spectrum of this compound.
- 69. Sammes, P. G.; Thetford, D. J. Chem. Soc., Perkin Trans. 1 1989, 655.
- 70. Denmark, S. E.; Edwards, J. P. J. Org. Chem. **1991**, 56, 6974.
- O'Brien, P.; Childs, A. C.; Ensor, G. J.; Hill, C. L.; Kirby, J. P.; Dearden, M. J.; Oxenford, S. J.; Rosser, C. M. Org. Lett. 2003, 5, 4955.
- 72. Kresze, G.; Muensterer, H. J. Org. Chem. **1983**, 48, 3561.
- 73. Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 1611.
- Taguchi, T.; Kojima, M. J. Am. Chem. Soc. **1959**, *81*, 4316.
 Giner, X.; Najera, C. Org. Lett. **2008**, *10*, 2919.
 Zacuto, M. J.; Xu, F. J. Org. Chem. **2007**, *72*, 6298.

8440